Lamia Abu El Maati, M. Ijaz Khan, Shaimaa A. M. Abdelmohsen, Badriah M. Alotaibi
{"title":"纳米材料在非牛顿液体流向可拉伸表面过程中的研究","authors":"Lamia Abu El Maati, M. Ijaz Khan, Shaimaa A. M. Abdelmohsen, Badriah M. Alotaibi","doi":"10.1515/phys-2023-0171","DOIUrl":null,"url":null,"abstract":"This article features the buoyancy-driven electro-magnetohydrodynamic micropolar nanomaterial flow subjected to motile microorganisms. The flow is engendered <jats:italic>via</jats:italic> an elongating surface, and the energy relation includes heat source generation, magnetohydrodynamics, and radiation. A Buongiorno nanomaterial model (which includes thermophoretic and Brownian diffusions) together with chemical reaction and bioconvection aspects is pondered. The nonlinear governing expressions are transfigured into a dimensionless system, and the dimensionless expressions are computed using the numerical differential-solve scheme. Graphical analyses are conducted to examine the liquid flow, microrotation velocity, microorganism concentration, and temperature in relation to secondary variables. It is observed that a higher Hartman number has an opposite influence on temperature and velocity profiles. A rise in material variables engenders a decline in microrotation velocity. The temperature is enhanced through radiation. The concentration shows conflicting trends for both thermophoretic and random factors. The presence of motile microorganisms reduces the bioconvection Lewis and Peclet numbers.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of nanomaterials in flow of non-Newtonian liquid toward a stretchable surface\",\"authors\":\"Lamia Abu El Maati, M. Ijaz Khan, Shaimaa A. M. Abdelmohsen, Badriah M. Alotaibi\",\"doi\":\"10.1515/phys-2023-0171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article features the buoyancy-driven electro-magnetohydrodynamic micropolar nanomaterial flow subjected to motile microorganisms. The flow is engendered <jats:italic>via</jats:italic> an elongating surface, and the energy relation includes heat source generation, magnetohydrodynamics, and radiation. A Buongiorno nanomaterial model (which includes thermophoretic and Brownian diffusions) together with chemical reaction and bioconvection aspects is pondered. The nonlinear governing expressions are transfigured into a dimensionless system, and the dimensionless expressions are computed using the numerical differential-solve scheme. Graphical analyses are conducted to examine the liquid flow, microrotation velocity, microorganism concentration, and temperature in relation to secondary variables. It is observed that a higher Hartman number has an opposite influence on temperature and velocity profiles. A rise in material variables engenders a decline in microrotation velocity. The temperature is enhanced through radiation. The concentration shows conflicting trends for both thermophoretic and random factors. The presence of motile microorganisms reduces the bioconvection Lewis and Peclet numbers.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/phys-2023-0171\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/phys-2023-0171","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation of nanomaterials in flow of non-Newtonian liquid toward a stretchable surface
This article features the buoyancy-driven electro-magnetohydrodynamic micropolar nanomaterial flow subjected to motile microorganisms. The flow is engendered via an elongating surface, and the energy relation includes heat source generation, magnetohydrodynamics, and radiation. A Buongiorno nanomaterial model (which includes thermophoretic and Brownian diffusions) together with chemical reaction and bioconvection aspects is pondered. The nonlinear governing expressions are transfigured into a dimensionless system, and the dimensionless expressions are computed using the numerical differential-solve scheme. Graphical analyses are conducted to examine the liquid flow, microrotation velocity, microorganism concentration, and temperature in relation to secondary variables. It is observed that a higher Hartman number has an opposite influence on temperature and velocity profiles. A rise in material variables engenders a decline in microrotation velocity. The temperature is enhanced through radiation. The concentration shows conflicting trends for both thermophoretic and random factors. The presence of motile microorganisms reduces the bioconvection Lewis and Peclet numbers.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.