Alessandro Buccini , Fei Chen , Omar De la Cruz Cabrera , Lothar Reichel
{"title":"大型数据集三角曲线的快速交替拟合方法","authors":"Alessandro Buccini , Fei Chen , Omar De la Cruz Cabrera , Lothar Reichel","doi":"10.1016/j.apnum.2024.01.001","DOIUrl":null,"url":null,"abstract":"<div><div>This paper discusses and develops new methods for fitting trigonometric curves, such as circles, ellipses, and dumbbells, to data points in the plane. Available methods for fitting circles or ellipses are very sensitive to outliers in the data, and are time consuming when the number of data points is large. The present paper focuses on curve fitting methods that are attractive to use when the number of data points is large. We propose a direct method for fitting circles, and two iterative methods for fitting ellipses and dumbbell curves based on trigonometric polynomials. These methods efficiently minimize the sum of the squared geometric distances between the given data points and the fitted curves. In particular, we are interested in detecting the general shape of an object such as a galaxy or a nebula. Certain nebulae, for instance, the one shown in the experiment section, have a dumbbell shape. Methods for fitting dumbbell curves have not been discussed in the literature. The methods developed are not very sensitive to errors in the data points. The use of random subsampling of the data points to speed up the computations also is discussed. The techniques developed in this paper can be applied to fitting other kinds of curves as well.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 104-134"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast alternating fitting methods for trigonometric curves for large data sets\",\"authors\":\"Alessandro Buccini , Fei Chen , Omar De la Cruz Cabrera , Lothar Reichel\",\"doi\":\"10.1016/j.apnum.2024.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper discusses and develops new methods for fitting trigonometric curves, such as circles, ellipses, and dumbbells, to data points in the plane. Available methods for fitting circles or ellipses are very sensitive to outliers in the data, and are time consuming when the number of data points is large. The present paper focuses on curve fitting methods that are attractive to use when the number of data points is large. We propose a direct method for fitting circles, and two iterative methods for fitting ellipses and dumbbell curves based on trigonometric polynomials. These methods efficiently minimize the sum of the squared geometric distances between the given data points and the fitted curves. In particular, we are interested in detecting the general shape of an object such as a galaxy or a nebula. Certain nebulae, for instance, the one shown in the experiment section, have a dumbbell shape. Methods for fitting dumbbell curves have not been discussed in the literature. The methods developed are not very sensitive to errors in the data points. The use of random subsampling of the data points to speed up the computations also is discussed. The techniques developed in this paper can be applied to fitting other kinds of curves as well.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"208 \",\"pages\":\"Pages 104-134\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424000011\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424000011","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Fast alternating fitting methods for trigonometric curves for large data sets
This paper discusses and develops new methods for fitting trigonometric curves, such as circles, ellipses, and dumbbells, to data points in the plane. Available methods for fitting circles or ellipses are very sensitive to outliers in the data, and are time consuming when the number of data points is large. The present paper focuses on curve fitting methods that are attractive to use when the number of data points is large. We propose a direct method for fitting circles, and two iterative methods for fitting ellipses and dumbbell curves based on trigonometric polynomials. These methods efficiently minimize the sum of the squared geometric distances between the given data points and the fitted curves. In particular, we are interested in detecting the general shape of an object such as a galaxy or a nebula. Certain nebulae, for instance, the one shown in the experiment section, have a dumbbell shape. Methods for fitting dumbbell curves have not been discussed in the literature. The methods developed are not very sensitive to errors in the data points. The use of random subsampling of the data points to speed up the computations also is discussed. The techniques developed in this paper can be applied to fitting other kinds of curves as well.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.