用于染料敏化太阳能电池和不对称超级电容器设备的高效加工碳烟@MoS2 混合双功能电极

IF 9.9 2区 材料科学 Q1 Engineering
{"title":"用于染料敏化太阳能电池和不对称超级电容器设备的高效加工碳烟@MoS2 混合双功能电极","authors":"","doi":"10.1016/j.nanoms.2024.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>A feasible approach to rectify the world's energy demand using sustainable development of adequate energy generation and storage technologies in a single channel. In this respect, we made a holistic approach with a bi-functional electrode material to perform effectively in energy generation and storage applications. MoS<sub>2</sub> nanosheets were produced by the eco-friendly method and reduced graphene oxide is used to prepared by carbon soot which is derived from castor oil. The prepared soot and rGO were combined with MoS<sub>2</sub> nanosheets using a simple sonication method. The as-prepared sample was introduced in the supercapacitor and DSSC application. The combination MoS<sub>2</sub>@rGO provides an enhanced conversion efficiency of 11.81 ​% and the reproducibility of DSSC is also studied. Further, MoS<sub>2</sub>@rGO is used to fabricate an asymmetric supercapacitor to investigate its real-time application. The device produced the maximum power density (1666.6 ​mW/kg) and energy density (25.69 ​mWh/Kg) at 1 A/g. The asymmetric supercapacitor device holds a cyclic stability of 81.4 % for 5000 cycles and it powered up an LED device for 4 ​min.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965124000011/pdfft?md5=5c93e0970c6281a7138d3bb123c37cdb&pid=1-s2.0-S2589965124000011-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Efficient processed carbon Soot@MoS2 hybrid Bi-functional electrode for dye-sensitized solar cell and asymmetric supercapacitor devices\",\"authors\":\"\",\"doi\":\"10.1016/j.nanoms.2024.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A feasible approach to rectify the world's energy demand using sustainable development of adequate energy generation and storage technologies in a single channel. In this respect, we made a holistic approach with a bi-functional electrode material to perform effectively in energy generation and storage applications. MoS<sub>2</sub> nanosheets were produced by the eco-friendly method and reduced graphene oxide is used to prepared by carbon soot which is derived from castor oil. The prepared soot and rGO were combined with MoS<sub>2</sub> nanosheets using a simple sonication method. The as-prepared sample was introduced in the supercapacitor and DSSC application. The combination MoS<sub>2</sub>@rGO provides an enhanced conversion efficiency of 11.81 ​% and the reproducibility of DSSC is also studied. Further, MoS<sub>2</sub>@rGO is used to fabricate an asymmetric supercapacitor to investigate its real-time application. The device produced the maximum power density (1666.6 ​mW/kg) and energy density (25.69 ​mWh/Kg) at 1 A/g. The asymmetric supercapacitor device holds a cyclic stability of 81.4 % for 5000 cycles and it powered up an LED device for 4 ​min.</p></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589965124000011/pdfft?md5=5c93e0970c6281a7138d3bb123c37cdb&pid=1-s2.0-S2589965124000011-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965124000011\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965124000011","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

利用可持续发展的发电和储能技术,以单一渠道满足世界能源需求的可行方法。在这方面,我们采用了一种具有双功能电极材料的整体方法,使其在发电和储能应用中发挥有效作用。MoS2 纳米片是用环保方法生产的,还原氧化石墨烯则是用从蓖麻油中提取的碳烟制备的。使用简单的超声方法将制备好的碳烟和还原氧化石墨烯与 MoS2 纳米片结合在一起。制备的样品被引入超级电容器和 DSSC 应用中。MoS2@rGO 组合的转换效率提高了 11.81%,同时还研究了 DSSC 的可重复性。此外,MoS2@rGO 还用于制造不对称超级电容器,以研究其实时应用。该装置在 1 A/g 时产生了最大功率密度(1666.6 mW/kg)和能量密度(25.69 mWh/Kg)。非对称超级电容器装置在 5000 次循环中保持了 81.4% 的循环稳定性,并为 LED 装置供电 4 分钟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient processed carbon Soot@MoS2 hybrid Bi-functional electrode for dye-sensitized solar cell and asymmetric supercapacitor devices

Efficient processed carbon Soot@MoS2 hybrid Bi-functional electrode for dye-sensitized solar cell and asymmetric supercapacitor devices

Efficient processed carbon Soot@MoS2 hybrid Bi-functional electrode for dye-sensitized solar cell and asymmetric supercapacitor devices

A feasible approach to rectify the world's energy demand using sustainable development of adequate energy generation and storage technologies in a single channel. In this respect, we made a holistic approach with a bi-functional electrode material to perform effectively in energy generation and storage applications. MoS2 nanosheets were produced by the eco-friendly method and reduced graphene oxide is used to prepared by carbon soot which is derived from castor oil. The prepared soot and rGO were combined with MoS2 nanosheets using a simple sonication method. The as-prepared sample was introduced in the supercapacitor and DSSC application. The combination MoS2@rGO provides an enhanced conversion efficiency of 11.81 ​% and the reproducibility of DSSC is also studied. Further, MoS2@rGO is used to fabricate an asymmetric supercapacitor to investigate its real-time application. The device produced the maximum power density (1666.6 ​mW/kg) and energy density (25.69 ​mWh/Kg) at 1 A/g. The asymmetric supercapacitor device holds a cyclic stability of 81.4 % for 5000 cycles and it powered up an LED device for 4 ​min.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信