面向下一代智能材料和设备的刺激响应配位聚合物

IF 42.9 Q1 ELECTROCHEMISTRY
Feifan Lang , Jiandong Pang , Xian-He Bu
{"title":"面向下一代智能材料和设备的刺激响应配位聚合物","authors":"Feifan Lang ,&nbsp;Jiandong Pang ,&nbsp;Xian-He Bu","doi":"10.1016/j.esci.2024.100231","DOIUrl":null,"url":null,"abstract":"<div><p>Stimuli-responsive coordination polymers (CPs) are among one of the most prolific research areas in developing the next-generation functional materials. Their capability of being accurately excited by particular external changes with pre-determined and observable/characterizable behaviors correspond, are the so called “stimuli” and “responsive”. Abundant types of CP compounds, especially metal-organic frameworks (MOFs), are of rocketing interest owing to their compositional diversity, structural tunability, and in essence their highly engineerable functionality. This present review is aimed to sketch several common types of stimulation and the corresponding responses for CPs, accompanied with the broad logic and mechanisms underneath. And further from the aspect of material revolution, some representative progresses together with the latest advances of CP-based materials in various fields are covered in attempt to display a broader picture towards the possible prospects of this topic.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 3","pages":"Article 100231"},"PeriodicalIF":42.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141724000041/pdfft?md5=e8860fd7500fdf1be0d9b0dc3c1d049e&pid=1-s2.0-S2667141724000041-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Stimuli-responsive coordination polymers toward next-generation smart materials and devices\",\"authors\":\"Feifan Lang ,&nbsp;Jiandong Pang ,&nbsp;Xian-He Bu\",\"doi\":\"10.1016/j.esci.2024.100231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stimuli-responsive coordination polymers (CPs) are among one of the most prolific research areas in developing the next-generation functional materials. Their capability of being accurately excited by particular external changes with pre-determined and observable/characterizable behaviors correspond, are the so called “stimuli” and “responsive”. Abundant types of CP compounds, especially metal-organic frameworks (MOFs), are of rocketing interest owing to their compositional diversity, structural tunability, and in essence their highly engineerable functionality. This present review is aimed to sketch several common types of stimulation and the corresponding responses for CPs, accompanied with the broad logic and mechanisms underneath. And further from the aspect of material revolution, some representative progresses together with the latest advances of CP-based materials in various fields are covered in attempt to display a broader picture towards the possible prospects of this topic.</p></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"4 3\",\"pages\":\"Article 100231\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667141724000041/pdfft?md5=e8860fd7500fdf1be0d9b0dc3c1d049e&pid=1-s2.0-S2667141724000041-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141724000041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724000041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

刺激响应配位聚合物(CPs)是开发新一代功能材料的最重要研究领域之一。它们能够被特定的外部变化准确激发,并具有预先确定和可观察/可描述的行为,这就是所谓的 "刺激 "和 "响应"。CP化合物种类繁多,尤其是金属有机框架(MOFs),由于其组成的多样性、结构的可调性以及本质上的高度工程功能性,其研究兴趣急剧上升。本综述旨在概述几种常见的刺激类型及其对氯化石蜡的相应反应,以及其背后的广泛逻辑和机制。此外,本综述还从材料革命的角度,介绍了一些具有代表性的进展,以及以 CP 为基础的材料在各个领域的最新进展,试图为这一主题的可能前景展现一幅更广阔的图景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stimuli-responsive coordination polymers toward next-generation smart materials and devices

Stimuli-responsive coordination polymers toward next-generation smart materials and devices

Stimuli-responsive coordination polymers toward next-generation smart materials and devices

Stimuli-responsive coordination polymers (CPs) are among one of the most prolific research areas in developing the next-generation functional materials. Their capability of being accurately excited by particular external changes with pre-determined and observable/characterizable behaviors correspond, are the so called “stimuli” and “responsive”. Abundant types of CP compounds, especially metal-organic frameworks (MOFs), are of rocketing interest owing to their compositional diversity, structural tunability, and in essence their highly engineerable functionality. This present review is aimed to sketch several common types of stimulation and the corresponding responses for CPs, accompanied with the broad logic and mechanisms underneath. And further from the aspect of material revolution, some representative progresses together with the latest advances of CP-based materials in various fields are covered in attempt to display a broader picture towards the possible prospects of this topic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信