Xiaobo Guo, Mingming Ha, Xuewen Tao, Shaoshuai Li, Youru Li, Zhenfeng Zhu, Zhiyong Shen, Li Ma
{"title":"面向工业应用的具有序列依赖性的多任务学习:系统阐述","authors":"Xiaobo Guo, Mingming Ha, Xuewen Tao, Shaoshuai Li, Youru Li, Zhenfeng Zhu, Zhiyong Shen, Li Ma","doi":"10.1145/3640468","DOIUrl":null,"url":null,"abstract":"<p>Multi-task learning (MTL) is widely used in the online recommendation and financial services for multi-step conversion estimation, but current works often overlook the sequential dependence among tasks. Particularly, sequential dependence multi-task learning (SDMTL) faces challenges in dealing with complex task correlations and extracting valuable information in real-world scenarios, leading to negative transfer and a deterioration in the performance. Herein, a systematic learning paradigm of the SDMTL problem is established for the first time, which applies to more general multi-step conversion scenarios with longer conversion paths or various task dependence relationships. Meanwhile, an SDMTL architecture, named <b>T</b>ask <b>A</b>ware <b>F</b>eature <b>E</b>xtraction (<b>TAFE</b>), is designed to enable the dynamic task representation learning from a sample-wise view. TAFE selectively reconstructs the implicit shared information corresponding to each sample case and performs the explicit task-specific extraction under dependence constraints, which can avoid the negative transfer, resulting in more effective information sharing and joint representation learning. Extensive experiment results demonstrate the effectiveness and applicability of the proposed theoretical and implementation frameworks. Furthermore, the online evaluations at MYbank showed that TAFE had an average increase of 9.22\\(\\% \\) and 3.76\\(\\% \\) in various scenarios on the post-view click-through \\(\\& \\) conversion rate (CTCVR) estimation task. Currently, TAFE has been depolyed in an online platform to provide various traffic services.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"93 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Task Learning with Sequential Dependence Towards Industrial Applications: A Systematic Formulation\",\"authors\":\"Xiaobo Guo, Mingming Ha, Xuewen Tao, Shaoshuai Li, Youru Li, Zhenfeng Zhu, Zhiyong Shen, Li Ma\",\"doi\":\"10.1145/3640468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multi-task learning (MTL) is widely used in the online recommendation and financial services for multi-step conversion estimation, but current works often overlook the sequential dependence among tasks. Particularly, sequential dependence multi-task learning (SDMTL) faces challenges in dealing with complex task correlations and extracting valuable information in real-world scenarios, leading to negative transfer and a deterioration in the performance. Herein, a systematic learning paradigm of the SDMTL problem is established for the first time, which applies to more general multi-step conversion scenarios with longer conversion paths or various task dependence relationships. Meanwhile, an SDMTL architecture, named <b>T</b>ask <b>A</b>ware <b>F</b>eature <b>E</b>xtraction (<b>TAFE</b>), is designed to enable the dynamic task representation learning from a sample-wise view. TAFE selectively reconstructs the implicit shared information corresponding to each sample case and performs the explicit task-specific extraction under dependence constraints, which can avoid the negative transfer, resulting in more effective information sharing and joint representation learning. Extensive experiment results demonstrate the effectiveness and applicability of the proposed theoretical and implementation frameworks. Furthermore, the online evaluations at MYbank showed that TAFE had an average increase of 9.22\\\\(\\\\% \\\\) and 3.76\\\\(\\\\% \\\\) in various scenarios on the post-view click-through \\\\(\\\\& \\\\) conversion rate (CTCVR) estimation task. Currently, TAFE has been depolyed in an online platform to provide various traffic services.</p>\",\"PeriodicalId\":49249,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3640468\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3640468","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Multi-Task Learning with Sequential Dependence Towards Industrial Applications: A Systematic Formulation
Multi-task learning (MTL) is widely used in the online recommendation and financial services for multi-step conversion estimation, but current works often overlook the sequential dependence among tasks. Particularly, sequential dependence multi-task learning (SDMTL) faces challenges in dealing with complex task correlations and extracting valuable information in real-world scenarios, leading to negative transfer and a deterioration in the performance. Herein, a systematic learning paradigm of the SDMTL problem is established for the first time, which applies to more general multi-step conversion scenarios with longer conversion paths or various task dependence relationships. Meanwhile, an SDMTL architecture, named Task Aware Feature Extraction (TAFE), is designed to enable the dynamic task representation learning from a sample-wise view. TAFE selectively reconstructs the implicit shared information corresponding to each sample case and performs the explicit task-specific extraction under dependence constraints, which can avoid the negative transfer, resulting in more effective information sharing and joint representation learning. Extensive experiment results demonstrate the effectiveness and applicability of the proposed theoretical and implementation frameworks. Furthermore, the online evaluations at MYbank showed that TAFE had an average increase of 9.22\(\% \) and 3.76\(\% \) in various scenarios on the post-view click-through \(\& \) conversion rate (CTCVR) estimation task. Currently, TAFE has been depolyed in an online platform to provide various traffic services.
期刊介绍:
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.