{"title":"放大流体花在地质介质中二氧化碳封存的结果","authors":"A. R. Kovscek, J. M. Nordbotten, M. A. Fernø","doi":"10.1007/s11242-023-02046-9","DOIUrl":null,"url":null,"abstract":"<div><p>The partial differential equations describing immiscible, but soluble, carbon dioxide (CO<sub>2</sub>) displacement of brine in saline storage formations are developed including mass transfer across the CO<sub>2</sub>–brine interface. Scaling relationships for characteristic time among laboratory and representative storage formation conditions are found upon assumption that free-phase CO<sub>2</sub> transport during injection is dominated by pressure-driven flow. The implication is that an hour in the FluidFlower (room-scale visual model) scales to hundreds of years of elapsed time in the storage formation. The scaling criteria permit extrapolation of the effects of changes in parameters and operating conditions. Interphase mass transfer allows CO<sub>2</sub> to saturate the brine phase and the finite time of such mass transfer results in substantial time to approach equilibrium. Significant mixing of CO<sub>2</sub> dissolved into formation brine with original brine is found experimentally and is also predicted. The magnitude of onset time for buoyancy-driven fingers that enhance mixing of CO<sub>2</sub> is typically only a fraction of the duration of CO<sub>2</sub> injection and in general agreement with theoretical analysis in the literature. Predictions for onset time of convective mixing at representative storage formation conditions, likewise, teach that the onset time for fingering is significantly less than the duration of CO<sub>2</sub> injection in some cases. The implications of this observation include that mixing of CO<sub>2</sub> with brine and the subsequent settling due to gravity are relatively rapid and coincide with the period of active CO<sub>2</sub> injection.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 5","pages":"975 - 1002"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling Up FluidFlower Results for Carbon Dioxide Storage in Geological Media\",\"authors\":\"A. R. Kovscek, J. M. Nordbotten, M. A. Fernø\",\"doi\":\"10.1007/s11242-023-02046-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The partial differential equations describing immiscible, but soluble, carbon dioxide (CO<sub>2</sub>) displacement of brine in saline storage formations are developed including mass transfer across the CO<sub>2</sub>–brine interface. Scaling relationships for characteristic time among laboratory and representative storage formation conditions are found upon assumption that free-phase CO<sub>2</sub> transport during injection is dominated by pressure-driven flow. The implication is that an hour in the FluidFlower (room-scale visual model) scales to hundreds of years of elapsed time in the storage formation. The scaling criteria permit extrapolation of the effects of changes in parameters and operating conditions. Interphase mass transfer allows CO<sub>2</sub> to saturate the brine phase and the finite time of such mass transfer results in substantial time to approach equilibrium. Significant mixing of CO<sub>2</sub> dissolved into formation brine with original brine is found experimentally and is also predicted. The magnitude of onset time for buoyancy-driven fingers that enhance mixing of CO<sub>2</sub> is typically only a fraction of the duration of CO<sub>2</sub> injection and in general agreement with theoretical analysis in the literature. Predictions for onset time of convective mixing at representative storage formation conditions, likewise, teach that the onset time for fingering is significantly less than the duration of CO<sub>2</sub> injection in some cases. The implications of this observation include that mixing of CO<sub>2</sub> with brine and the subsequent settling due to gravity are relatively rapid and coincide with the period of active CO<sub>2</sub> injection.</p></div>\",\"PeriodicalId\":804,\"journal\":{\"name\":\"Transport in Porous Media\",\"volume\":\"151 5\",\"pages\":\"975 - 1002\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport in Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11242-023-02046-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-023-02046-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Scaling Up FluidFlower Results for Carbon Dioxide Storage in Geological Media
The partial differential equations describing immiscible, but soluble, carbon dioxide (CO2) displacement of brine in saline storage formations are developed including mass transfer across the CO2–brine interface. Scaling relationships for characteristic time among laboratory and representative storage formation conditions are found upon assumption that free-phase CO2 transport during injection is dominated by pressure-driven flow. The implication is that an hour in the FluidFlower (room-scale visual model) scales to hundreds of years of elapsed time in the storage formation. The scaling criteria permit extrapolation of the effects of changes in parameters and operating conditions. Interphase mass transfer allows CO2 to saturate the brine phase and the finite time of such mass transfer results in substantial time to approach equilibrium. Significant mixing of CO2 dissolved into formation brine with original brine is found experimentally and is also predicted. The magnitude of onset time for buoyancy-driven fingers that enhance mixing of CO2 is typically only a fraction of the duration of CO2 injection and in general agreement with theoretical analysis in the literature. Predictions for onset time of convective mixing at representative storage formation conditions, likewise, teach that the onset time for fingering is significantly less than the duration of CO2 injection in some cases. The implications of this observation include that mixing of CO2 with brine and the subsequent settling due to gravity are relatively rapid and coincide with the period of active CO2 injection.
期刊介绍:
-Publishes original research on physical, chemical, and biological aspects of transport in porous media-
Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)-
Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications-
Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes-
Expanded in 2007 from 12 to 15 issues per year.
Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).