Soudabeh Dalvandi, Farideh Heydari, Mohammad Maghasedi
{"title":"类 L(3) 中 $$(K_n,U^-)$$ 的特征描述","authors":"Soudabeh Dalvandi, Farideh Heydari, Mohammad Maghasedi","doi":"10.1007/s11587-023-00844-3","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\((K_{n},H^-)\\)</span> be a complete sigraph whose negative edges induce a subgraph <i>H</i>. Let <i>L</i>(3) be the class of all sigraphs having exactly three non-negative eigenvalues (including their multiplicities). In this paper, we characterize <span>\\((K_n,U^-)\\in L(3)\\)</span>, where <i>U</i> is a non-spanning unicyclic subgraph of <span>\\( K_n \\)</span>.</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"16 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A characterization of $$(K_n,U^-)$$ in the class L(3)\",\"authors\":\"Soudabeh Dalvandi, Farideh Heydari, Mohammad Maghasedi\",\"doi\":\"10.1007/s11587-023-00844-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\((K_{n},H^-)\\\\)</span> be a complete sigraph whose negative edges induce a subgraph <i>H</i>. Let <i>L</i>(3) be the class of all sigraphs having exactly three non-negative eigenvalues (including their multiplicities). In this paper, we characterize <span>\\\\((K_n,U^-)\\\\in L(3)\\\\)</span>, where <i>U</i> is a non-spanning unicyclic subgraph of <span>\\\\( K_n \\\\)</span>.</p>\",\"PeriodicalId\":21373,\"journal\":{\"name\":\"Ricerche di Matematica\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ricerche di Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-023-00844-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-023-00844-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A characterization of $$(K_n,U^-)$$ in the class L(3)
Let \((K_{n},H^-)\) be a complete sigraph whose negative edges induce a subgraph H. Let L(3) be the class of all sigraphs having exactly three non-negative eigenvalues (including their multiplicities). In this paper, we characterize \((K_n,U^-)\in L(3)\), where U is a non-spanning unicyclic subgraph of \( K_n \).
期刊介绍:
“Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.