类 L(3) 中 $$(K_n,U^-)$$ 的特征描述

IF 1.1 4区 数学 Q1 MATHEMATICS
Soudabeh Dalvandi, Farideh Heydari, Mohammad Maghasedi
{"title":"类 L(3) 中 $$(K_n,U^-)$$ 的特征描述","authors":"Soudabeh Dalvandi, Farideh Heydari, Mohammad Maghasedi","doi":"10.1007/s11587-023-00844-3","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\((K_{n},H^-)\\)</span> be a complete sigraph whose negative edges induce a subgraph <i>H</i>. Let <i>L</i>(3) be the class of all sigraphs having exactly three non-negative eigenvalues (including their multiplicities). In this paper, we characterize <span>\\((K_n,U^-)\\in L(3)\\)</span>, where <i>U</i> is a non-spanning unicyclic subgraph of <span>\\( K_n \\)</span>.</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"16 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A characterization of $$(K_n,U^-)$$ in the class L(3)\",\"authors\":\"Soudabeh Dalvandi, Farideh Heydari, Mohammad Maghasedi\",\"doi\":\"10.1007/s11587-023-00844-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\((K_{n},H^-)\\\\)</span> be a complete sigraph whose negative edges induce a subgraph <i>H</i>. Let <i>L</i>(3) be the class of all sigraphs having exactly three non-negative eigenvalues (including their multiplicities). In this paper, we characterize <span>\\\\((K_n,U^-)\\\\in L(3)\\\\)</span>, where <i>U</i> is a non-spanning unicyclic subgraph of <span>\\\\( K_n \\\\)</span>.</p>\",\"PeriodicalId\":21373,\"journal\":{\"name\":\"Ricerche di Matematica\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ricerche di Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-023-00844-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-023-00844-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \((K_{n},H^-)\) 是一个完整的西格图,它的负边会诱导出一个子图 H。让 L(3) 是所有西格图的类,这些西格图恰好有三个非负特征值(包括它们的乘数)。在本文中,我们将描述 \((K_n,U^-)\in L(3)\) 的特征,其中 U 是 \( K_n \) 的非遍及单环子图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A characterization of $$(K_n,U^-)$$ in the class L(3)

A characterization of $$(K_n,U^-)$$ in the class L(3)

Let \((K_{n},H^-)\) be a complete sigraph whose negative edges induce a subgraph H. Let L(3) be the class of all sigraphs having exactly three non-negative eigenvalues (including their multiplicities). In this paper, we characterize \((K_n,U^-)\in L(3)\), where U is a non-spanning unicyclic subgraph of \( K_n \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ricerche di Matematica
Ricerche di Matematica Mathematics-Applied Mathematics
CiteScore
3.00
自引率
8.30%
发文量
61
期刊介绍: “Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信