以顶点覆盖数为参数的旅行推销员问题的二次阶问题内核

IF 0.8 4区 管理学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
René van Bevern , Daniel A. Skachkov
{"title":"以顶点覆盖数为参数的旅行推销员问题的二次阶问题内核","authors":"René van Bevern ,&nbsp;Daniel A. Skachkov","doi":"10.1016/j.orl.2024.107065","DOIUrl":null,"url":null,"abstract":"<div><p><span>The NP-hard graphical traveling salesman problem (GTSP) is to find a closed walk of total minimum weight that visits each vertex in an undirected edge-weighted and not necessarily complete graph. We present a problem kernel with </span><span><math><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>τ</mi></math></span> vertices for GTSP, where <em>τ</em> is the vertex cover number of the input graph. Any <em>α</em>-approximate solution for the problem kernel also gives an <em>α</em>-approximate solution for the original instance, for any <span><math><mi>α</mi><mo>≥</mo><mn>1</mn></math></span>.</p></div>","PeriodicalId":54682,"journal":{"name":"Operations Research Letters","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quadratic-order problem kernel for the traveling salesman problem parameterized by the vertex cover number\",\"authors\":\"René van Bevern ,&nbsp;Daniel A. Skachkov\",\"doi\":\"10.1016/j.orl.2024.107065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The NP-hard graphical traveling salesman problem (GTSP) is to find a closed walk of total minimum weight that visits each vertex in an undirected edge-weighted and not necessarily complete graph. We present a problem kernel with </span><span><math><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>τ</mi></math></span> vertices for GTSP, where <em>τ</em> is the vertex cover number of the input graph. Any <em>α</em>-approximate solution for the problem kernel also gives an <em>α</em>-approximate solution for the original instance, for any <span><math><mi>α</mi><mo>≥</mo><mn>1</mn></math></span>.</p></div>\",\"PeriodicalId\":54682,\"journal\":{\"name\":\"Operations Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Letters\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167637724000014\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Letters","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167637724000014","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

图形旅行推销员问题(NP-hard graphical traveling salesman problem,GTSP)是指找到一个总重量最小的封闭步行路径,该路径能访问无向有边加权且不一定完整的图中的每个顶点。我们为 GTSP 提出了一个具有 τ2+τ 个顶点的问题内核,其中 τ 是输入图的顶点覆盖数。对于任意 α≥1 的问题内核,任何 α 近似解都能给出原始实例的 α 近似解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A quadratic-order problem kernel for the traveling salesman problem parameterized by the vertex cover number

The NP-hard graphical traveling salesman problem (GTSP) is to find a closed walk of total minimum weight that visits each vertex in an undirected edge-weighted and not necessarily complete graph. We present a problem kernel with τ2+τ vertices for GTSP, where τ is the vertex cover number of the input graph. Any α-approximate solution for the problem kernel also gives an α-approximate solution for the original instance, for any α1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research Letters
Operations Research Letters 管理科学-运筹学与管理科学
CiteScore
2.10
自引率
9.10%
发文量
111
审稿时长
83 days
期刊介绍: Operations Research Letters is committed to the rapid review and fast publication of short articles on all aspects of operations research and analytics. Apart from a limitation to eight journal pages, quality, originality, relevance and clarity are the only criteria for selecting the papers to be published. ORL covers the broad field of optimization, stochastic models and game theory. Specific areas of interest include networks, routing, location, queueing, scheduling, inventory, reliability, and financial engineering. We wish to explore interfaces with other fields such as life sciences and health care, artificial intelligence and machine learning, energy distribution, and computational social sciences and humanities. Our traditional strength is in methodology, including theory, modelling, algorithms and computational studies. We also welcome novel applications and concise literature reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信