{"title":"基于大型语言模型的材料设计中的生成检索-增强本体图和多代理策略","authors":"Markus J. Buehler*, ","doi":"10.1021/acsengineeringau.3c00058","DOIUrl":null,"url":null,"abstract":"<p >Transformer neural networks show promising capabilities, in particular for uses in materials analysis, design, and manufacturing, including their capacity to work effectively with human language, symbols, code, and numerical data. Here, we explore the use of large language models (LLMs) as a tool that can support engineering analysis of materials, applied to retrieving key information about subject areas, developing research hypotheses, discovery of mechanistic relationships across disparate areas of knowledge, and writing and executing simulation codes for active knowledge generation based on physical ground truths. Moreover, when used as sets of AI agents with specific features, capabilities, and instructions, LLMs can provide powerful problem-solution strategies for applications in analysis and design problems. Our experiments focus on using a fine-tuned model, MechGPT, developed based on training data in the mechanics of materials domain. We first affirm how fine-tuning endows LLMs with a reasonable understanding of subject area knowledge. However, when queried outside the context of learned matter, LLMs can have difficulty recalling correct information and may hallucinate. We show how this can be addressed using retrieval-augmented Ontological Knowledge Graph strategies. The graph-based strategy helps us not only to discern how the model understands what concepts are important but also how they are related, which significantly improves generative performance and also naturally allows for injection of new and augmented data sources into generative AI algorithms. We find that the additional feature of relatedness provides advantages over regular retrieval augmentation approaches and not only improves LLM performance but also provides mechanistic insights for exploration of a material design process. Illustrated for a use case of relating distinct areas of knowledge, here, music and proteins, such strategies can also provide an interpretable graph structure with rich information at the node, edge, and subgraph level that provides specific insights into mechanisms and relationships. We discuss other approaches to improve generative qualities, including nonlinear sampling strategies and agent-based modeling that offer enhancements over single-shot generations, whereby LLMs are used to both generate content and assess content against an objective target. Examples provided include complex question answering, code generation, and execution in the context of automated force-field development from actively learned density functional theory (DFT) modeling and data analysis.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.3c00058","citationCount":"0","resultStr":"{\"title\":\"Generative Retrieval-Augmented Ontologic Graph and Multiagent Strategies for Interpretive Large Language Model-Based Materials Design\",\"authors\":\"Markus J. Buehler*, \",\"doi\":\"10.1021/acsengineeringau.3c00058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Transformer neural networks show promising capabilities, in particular for uses in materials analysis, design, and manufacturing, including their capacity to work effectively with human language, symbols, code, and numerical data. Here, we explore the use of large language models (LLMs) as a tool that can support engineering analysis of materials, applied to retrieving key information about subject areas, developing research hypotheses, discovery of mechanistic relationships across disparate areas of knowledge, and writing and executing simulation codes for active knowledge generation based on physical ground truths. Moreover, when used as sets of AI agents with specific features, capabilities, and instructions, LLMs can provide powerful problem-solution strategies for applications in analysis and design problems. Our experiments focus on using a fine-tuned model, MechGPT, developed based on training data in the mechanics of materials domain. We first affirm how fine-tuning endows LLMs with a reasonable understanding of subject area knowledge. However, when queried outside the context of learned matter, LLMs can have difficulty recalling correct information and may hallucinate. We show how this can be addressed using retrieval-augmented Ontological Knowledge Graph strategies. The graph-based strategy helps us not only to discern how the model understands what concepts are important but also how they are related, which significantly improves generative performance and also naturally allows for injection of new and augmented data sources into generative AI algorithms. We find that the additional feature of relatedness provides advantages over regular retrieval augmentation approaches and not only improves LLM performance but also provides mechanistic insights for exploration of a material design process. Illustrated for a use case of relating distinct areas of knowledge, here, music and proteins, such strategies can also provide an interpretable graph structure with rich information at the node, edge, and subgraph level that provides specific insights into mechanisms and relationships. We discuss other approaches to improve generative qualities, including nonlinear sampling strategies and agent-based modeling that offer enhancements over single-shot generations, whereby LLMs are used to both generate content and assess content against an objective target. Examples provided include complex question answering, code generation, and execution in the context of automated force-field development from actively learned density functional theory (DFT) modeling and data analysis.</p>\",\"PeriodicalId\":29804,\"journal\":{\"name\":\"ACS Engineering Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.3c00058\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Engineering Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Generative Retrieval-Augmented Ontologic Graph and Multiagent Strategies for Interpretive Large Language Model-Based Materials Design
Transformer neural networks show promising capabilities, in particular for uses in materials analysis, design, and manufacturing, including their capacity to work effectively with human language, symbols, code, and numerical data. Here, we explore the use of large language models (LLMs) as a tool that can support engineering analysis of materials, applied to retrieving key information about subject areas, developing research hypotheses, discovery of mechanistic relationships across disparate areas of knowledge, and writing and executing simulation codes for active knowledge generation based on physical ground truths. Moreover, when used as sets of AI agents with specific features, capabilities, and instructions, LLMs can provide powerful problem-solution strategies for applications in analysis and design problems. Our experiments focus on using a fine-tuned model, MechGPT, developed based on training data in the mechanics of materials domain. We first affirm how fine-tuning endows LLMs with a reasonable understanding of subject area knowledge. However, when queried outside the context of learned matter, LLMs can have difficulty recalling correct information and may hallucinate. We show how this can be addressed using retrieval-augmented Ontological Knowledge Graph strategies. The graph-based strategy helps us not only to discern how the model understands what concepts are important but also how they are related, which significantly improves generative performance and also naturally allows for injection of new and augmented data sources into generative AI algorithms. We find that the additional feature of relatedness provides advantages over regular retrieval augmentation approaches and not only improves LLM performance but also provides mechanistic insights for exploration of a material design process. Illustrated for a use case of relating distinct areas of knowledge, here, music and proteins, such strategies can also provide an interpretable graph structure with rich information at the node, edge, and subgraph level that provides specific insights into mechanisms and relationships. We discuss other approaches to improve generative qualities, including nonlinear sampling strategies and agent-based modeling that offer enhancements over single-shot generations, whereby LLMs are used to both generate content and assess content against an objective target. Examples provided include complex question answering, code generation, and execution in the context of automated force-field development from actively learned density functional theory (DFT) modeling and data analysis.
期刊介绍:
)ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)