具有 α、β 和 γ 结晶形态的聚偏二氟乙烯气凝胶:理化特性与多晶型结构之间的关联

IF 4.7 Q1 POLYMER SCIENCE
Sruthi Suresh, Turkan Nabiyeva, Laure Biniek* and E. Bhoje Gowd*, 
{"title":"具有 α、β 和 γ 结晶形态的聚偏二氟乙烯气凝胶:理化特性与多晶型结构之间的关联","authors":"Sruthi Suresh,&nbsp;Turkan Nabiyeva,&nbsp;Laure Biniek* and E. Bhoje Gowd*,&nbsp;","doi":"10.1021/acspolymersau.3c00044","DOIUrl":null,"url":null,"abstract":"<p >Strategic customization of crystalline forms of poly(vinylidene fluoride) (PVDF) aerogels is of great importance for a variety of applications, from energy harvesters to thermal and acoustic insulation. Here, we report sustainable strategies to prepare crystalline pure α, β, and γ forms of PVDF aerogels from their respective gels using a solvent exchange strategy with green solvents, followed by a freeze-drying technique. The crucial aspect of this process was the meticulous choice of appropriate solvents to enable the formation of thermoreversible gels of PVDF by crystallization-induced gelation. Depending on the polymer–solvent interactions, the chain conformation of PVDF can be modulated to obtain gels and aerogels with specific crystalline structures. The crystalline pure α-form and piezoelectric β-form aerogels were readily obtained by using cyclohexanone and γ-butyrolactone as gelation solvents. On the other hand, the γ-form aerogel was obtained using a binary solvent system consisting of dimethylacetamide and water. These aerogels with distinct crystalline structures exhibit different morphologies, mechanical properties, hydrophobicities, acoustic properties, and electrical properties. Measurement of thermal conductivity for these aerogels showed exceptionally low thermal conductivity values of ∼0.040 ± 0.003 W m<sup>–1</sup> K<sup>–1</sup> irrespective of their crystal structures. Our results showcase the fabrication approaches that enable PVDF aerogels with varied physicochemical properties for multifunctional applications.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"4 2","pages":"128–139"},"PeriodicalIF":4.7000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.3c00044","citationCount":"0","resultStr":"{\"title\":\"Poly(vinylidene fluoride) Aerogels with α, β, and γ Crystalline Forms: Correlating Physicochemical Properties with Polymorphic Structures\",\"authors\":\"Sruthi Suresh,&nbsp;Turkan Nabiyeva,&nbsp;Laure Biniek* and E. Bhoje Gowd*,&nbsp;\",\"doi\":\"10.1021/acspolymersau.3c00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Strategic customization of crystalline forms of poly(vinylidene fluoride) (PVDF) aerogels is of great importance for a variety of applications, from energy harvesters to thermal and acoustic insulation. Here, we report sustainable strategies to prepare crystalline pure α, β, and γ forms of PVDF aerogels from their respective gels using a solvent exchange strategy with green solvents, followed by a freeze-drying technique. The crucial aspect of this process was the meticulous choice of appropriate solvents to enable the formation of thermoreversible gels of PVDF by crystallization-induced gelation. Depending on the polymer–solvent interactions, the chain conformation of PVDF can be modulated to obtain gels and aerogels with specific crystalline structures. The crystalline pure α-form and piezoelectric β-form aerogels were readily obtained by using cyclohexanone and γ-butyrolactone as gelation solvents. On the other hand, the γ-form aerogel was obtained using a binary solvent system consisting of dimethylacetamide and water. These aerogels with distinct crystalline structures exhibit different morphologies, mechanical properties, hydrophobicities, acoustic properties, and electrical properties. Measurement of thermal conductivity for these aerogels showed exceptionally low thermal conductivity values of ∼0.040 ± 0.003 W m<sup>–1</sup> K<sup>–1</sup> irrespective of their crystal structures. Our results showcase the fabrication approaches that enable PVDF aerogels with varied physicochemical properties for multifunctional applications.</p>\",\"PeriodicalId\":72049,\"journal\":{\"name\":\"ACS polymers Au\",\"volume\":\"4 2\",\"pages\":\"128–139\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.3c00044\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS polymers Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acspolymersau.3c00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS polymers Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acspolymersau.3c00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

聚偏二氟乙烯(PVDF)气凝胶结晶形式的战略定制对于从能量收集器到隔热和隔音等各种应用具有重要意义。在此,我们报告了利用绿色溶剂的溶剂交换策略,然后采用冷冻干燥技术,从各自的凝胶体中制备结晶纯α、β和γ形式的聚偏二氟乙烯(PVDF)气凝胶的可持续策略。这一过程的关键是精心选择适当的溶剂,以便通过结晶诱导凝胶化形成热可逆的 PVDF 凝胶。根据聚合物与溶剂之间的相互作用,可以调节 PVDF 的链构象,从而获得具有特定结晶结构的凝胶和气凝胶。使用环己酮和γ-丁内酯作为凝胶溶剂,很容易获得结晶纯α型气凝胶和压电β型气凝胶。另一方面,使用由二甲基乙酰胺和水组成的二元溶剂系统则可获得 γ 形气凝胶。这些具有不同结晶结构的气凝胶表现出不同的形态、机械性能、疏水性、声学性能和电学性能。这些气凝胶的热导率测量结果显示,无论其晶体结构如何,其热导率都非常低,仅为 ∼0.040 ± 0.003 W m-1 K-1。我们的研究结果展示了能使 PVDF 气凝胶具有不同理化特性的多功能应用的制造方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Poly(vinylidene fluoride) Aerogels with α, β, and γ Crystalline Forms: Correlating Physicochemical Properties with Polymorphic Structures

Poly(vinylidene fluoride) Aerogels with α, β, and γ Crystalline Forms: Correlating Physicochemical Properties with Polymorphic Structures

Poly(vinylidene fluoride) Aerogels with α, β, and γ Crystalline Forms: Correlating Physicochemical Properties with Polymorphic Structures

Strategic customization of crystalline forms of poly(vinylidene fluoride) (PVDF) aerogels is of great importance for a variety of applications, from energy harvesters to thermal and acoustic insulation. Here, we report sustainable strategies to prepare crystalline pure α, β, and γ forms of PVDF aerogels from their respective gels using a solvent exchange strategy with green solvents, followed by a freeze-drying technique. The crucial aspect of this process was the meticulous choice of appropriate solvents to enable the formation of thermoreversible gels of PVDF by crystallization-induced gelation. Depending on the polymer–solvent interactions, the chain conformation of PVDF can be modulated to obtain gels and aerogels with specific crystalline structures. The crystalline pure α-form and piezoelectric β-form aerogels were readily obtained by using cyclohexanone and γ-butyrolactone as gelation solvents. On the other hand, the γ-form aerogel was obtained using a binary solvent system consisting of dimethylacetamide and water. These aerogels with distinct crystalline structures exhibit different morphologies, mechanical properties, hydrophobicities, acoustic properties, and electrical properties. Measurement of thermal conductivity for these aerogels showed exceptionally low thermal conductivity values of ∼0.040 ± 0.003 W m–1 K–1 irrespective of their crystal structures. Our results showcase the fabrication approaches that enable PVDF aerogels with varied physicochemical properties for multifunctional applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信