Nikolay T. Tzvetkov , Martina I. Peeva , Maya G. Georgieva , Vera Deneva , Aneliya A. Balacheva , Ivan P. Bogdanov , Maria Ponticelli , Luigi Milella , Kiril Kirilov , Maima Matin , Hans-Georg Stammler , Atanas G. Atanasov , Liudmil Antonov
{"title":"法维拉韦与去铁酮:同分异构体、光物理、体外生物学研究以及与 SARS-Cov-2-MPro/ACE2 的结合相互作用","authors":"Nikolay T. Tzvetkov , Martina I. Peeva , Maya G. Georgieva , Vera Deneva , Aneliya A. Balacheva , Ivan P. Bogdanov , Maria Ponticelli , Luigi Milella , Kiril Kirilov , Maima Matin , Hans-Georg Stammler , Atanas G. Atanasov , Liudmil Antonov","doi":"10.1016/j.crbiot.2024.100176","DOIUrl":null,"url":null,"abstract":"<div><p>Coronavirus disease 2019 (COVID-19) still remains the most disastrous infection continuously affecting millions of people worldwide. Herein, we performed a comparative study between the anti-influenza drug favipiravir (FAV) and the anti-thalassemia drug deferiprone (DFP) in order to examine their potential as basic scaffolds for the generation of most effective and structurally novel antivirals. To conduct the initial molecular modelling and virtual screening steps, our recently proposed single crystal X-ray diffraction (SCXRD)/HYdrogen DEssolvation (HYDE) technology platform has been used. This platform allows molecular design, interactive prioritization and virtual evaluation of newly designed molecules, simultaneously affecting two COVID-related targets, including angiotensin-converting enzyme 2 (ACE2) as a host-cellular receptor (<em>host-based approach</em>) and the main protease (M<sup>pro</sup>) enzyme of the spike glycoprotein of SARS-Cov-2 (<em>virus-based approach</em>). Based on the molecular docking results, DFP has shown higher binding affinity (<em>K</em><sub>i HYDE</sub> values) over FAV towards both biological targets. The tautomeric, physicochemical, and biological properties of FAV and DFP have been studied both experimentally and theoretically using molecular spectroscopy (UV–VIS absorption), parallel artificial membrane permeability assay, and cell biology (PAMPA and MTT assay), as well as DFT quantum chemical calculations. According to the obtained results, the enol tautomers of both compounds are considerably more stable in different organic solvents. However, the keto tautomer of FAV was estimated to be most preferable under physiological conditions, which is in good agreement with the molecular docking studies. The isolated crystal structure of DFP is in an excellent agreement with the computation in respect of the most stable tautomer. Combined single X-ray/molecular modeling studies including HYDE analyses provided not only insights into the protein–ligand interactions within the binding site of SARS-Cov-2-ACE2 and SARS-Cov-2-M<sup>pro</sup>, but also a valuable information regarding the most stable enol tautomeric form of DFP that contributes to its estimated higher potency against these targets.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590262824000029/pdfft?md5=a17204b49a75bb8e5de9f739f6f9c889&pid=1-s2.0-S2590262824000029-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Favipiravir vs. Deferiprone: Tautomeric, photophysical, in vitro biological studies, and binding interactions with SARS-Cov-2-MPro/ACE2\",\"authors\":\"Nikolay T. Tzvetkov , Martina I. Peeva , Maya G. Georgieva , Vera Deneva , Aneliya A. Balacheva , Ivan P. Bogdanov , Maria Ponticelli , Luigi Milella , Kiril Kirilov , Maima Matin , Hans-Georg Stammler , Atanas G. Atanasov , Liudmil Antonov\",\"doi\":\"10.1016/j.crbiot.2024.100176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Coronavirus disease 2019 (COVID-19) still remains the most disastrous infection continuously affecting millions of people worldwide. Herein, we performed a comparative study between the anti-influenza drug favipiravir (FAV) and the anti-thalassemia drug deferiprone (DFP) in order to examine their potential as basic scaffolds for the generation of most effective and structurally novel antivirals. To conduct the initial molecular modelling and virtual screening steps, our recently proposed single crystal X-ray diffraction (SCXRD)/HYdrogen DEssolvation (HYDE) technology platform has been used. This platform allows molecular design, interactive prioritization and virtual evaluation of newly designed molecules, simultaneously affecting two COVID-related targets, including angiotensin-converting enzyme 2 (ACE2) as a host-cellular receptor (<em>host-based approach</em>) and the main protease (M<sup>pro</sup>) enzyme of the spike glycoprotein of SARS-Cov-2 (<em>virus-based approach</em>). Based on the molecular docking results, DFP has shown higher binding affinity (<em>K</em><sub>i HYDE</sub> values) over FAV towards both biological targets. The tautomeric, physicochemical, and biological properties of FAV and DFP have been studied both experimentally and theoretically using molecular spectroscopy (UV–VIS absorption), parallel artificial membrane permeability assay, and cell biology (PAMPA and MTT assay), as well as DFT quantum chemical calculations. According to the obtained results, the enol tautomers of both compounds are considerably more stable in different organic solvents. However, the keto tautomer of FAV was estimated to be most preferable under physiological conditions, which is in good agreement with the molecular docking studies. The isolated crystal structure of DFP is in an excellent agreement with the computation in respect of the most stable tautomer. Combined single X-ray/molecular modeling studies including HYDE analyses provided not only insights into the protein–ligand interactions within the binding site of SARS-Cov-2-ACE2 and SARS-Cov-2-M<sup>pro</sup>, but also a valuable information regarding the most stable enol tautomeric form of DFP that contributes to its estimated higher potency against these targets.</p></div>\",\"PeriodicalId\":52676,\"journal\":{\"name\":\"Current Research in Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590262824000029/pdfft?md5=a17204b49a75bb8e5de9f739f6f9c889&pid=1-s2.0-S2590262824000029-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590262824000029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590262824000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Favipiravir vs. Deferiprone: Tautomeric, photophysical, in vitro biological studies, and binding interactions with SARS-Cov-2-MPro/ACE2
Coronavirus disease 2019 (COVID-19) still remains the most disastrous infection continuously affecting millions of people worldwide. Herein, we performed a comparative study between the anti-influenza drug favipiravir (FAV) and the anti-thalassemia drug deferiprone (DFP) in order to examine their potential as basic scaffolds for the generation of most effective and structurally novel antivirals. To conduct the initial molecular modelling and virtual screening steps, our recently proposed single crystal X-ray diffraction (SCXRD)/HYdrogen DEssolvation (HYDE) technology platform has been used. This platform allows molecular design, interactive prioritization and virtual evaluation of newly designed molecules, simultaneously affecting two COVID-related targets, including angiotensin-converting enzyme 2 (ACE2) as a host-cellular receptor (host-based approach) and the main protease (Mpro) enzyme of the spike glycoprotein of SARS-Cov-2 (virus-based approach). Based on the molecular docking results, DFP has shown higher binding affinity (Ki HYDE values) over FAV towards both biological targets. The tautomeric, physicochemical, and biological properties of FAV and DFP have been studied both experimentally and theoretically using molecular spectroscopy (UV–VIS absorption), parallel artificial membrane permeability assay, and cell biology (PAMPA and MTT assay), as well as DFT quantum chemical calculations. According to the obtained results, the enol tautomers of both compounds are considerably more stable in different organic solvents. However, the keto tautomer of FAV was estimated to be most preferable under physiological conditions, which is in good agreement with the molecular docking studies. The isolated crystal structure of DFP is in an excellent agreement with the computation in respect of the most stable tautomer. Combined single X-ray/molecular modeling studies including HYDE analyses provided not only insights into the protein–ligand interactions within the binding site of SARS-Cov-2-ACE2 and SARS-Cov-2-Mpro, but also a valuable information regarding the most stable enol tautomeric form of DFP that contributes to its estimated higher potency against these targets.
期刊介绍:
Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines.
Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.