{"title":"用 SBS 改性沥青胶结料和石油树脂优化农村路面","authors":"Je-won Kim, Kyungnam Kim, Tri Ho Minh Le","doi":"10.3390/buildings14010116","DOIUrl":null,"url":null,"abstract":"This study addresses the imperative for enhancing asphalt mixtures tailored for rural pavements, focusing on optimizing RAP mixtures with styrene–butadiene–styrene (SBS)-modified asphalt binders incorporating petroleum resin and oil. Through systematic investigation, the study examines the impact of varying RAP content (25% and 50%) and two SBS-modified asphalt binder types (Type 1 and Type 2) on mechanical properties and sustainability. Laboratory tests reveal that the mix of 25% RAP + 75% Type 1 exhibits exceptional flexibility, evidenced by a high ductility value of 880 mm at 25 °C, enhancing pavement resilience. Conversely, the 50% RAP + 50% Type 2 mixture displays vulnerability to fatigue cracking, while 25% RAP + 75% Type 1 demonstrates superior resistance, with a fatigue vulnerability value of 1524 kPa. The Hamburg Wheel Tracking test highlights the influence of RAP content on rut depth, with the mix of 50% RAP + 50% Type 1 achieving the lowest rutting at 3.9 mm. Overlay test results show the mix of 25% RAP + 75% Type 2’s resilience, with the lowest load reduction at 64.5%, while the mix of 50% RAP + 50% Type 1 exhibits substantial load reduction at 82.1%. Field tests unveil differences in pavement bearing capacities, with the mix of 25% RAP + 75% Type 2 demonstrating a remarkable elastic modulus of 58.5 MPa, indicating heightened bearing capacity. The investigation underscores the significant role of SBS-modified asphalt binders with incorporated petroleum resin and oil in enhancing fatigue resistance for sustainable rural pavements.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":"56 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Rural Pavements with SBS-Modified Asphalt Binders and Petroleum Resin\",\"authors\":\"Je-won Kim, Kyungnam Kim, Tri Ho Minh Le\",\"doi\":\"10.3390/buildings14010116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study addresses the imperative for enhancing asphalt mixtures tailored for rural pavements, focusing on optimizing RAP mixtures with styrene–butadiene–styrene (SBS)-modified asphalt binders incorporating petroleum resin and oil. Through systematic investigation, the study examines the impact of varying RAP content (25% and 50%) and two SBS-modified asphalt binder types (Type 1 and Type 2) on mechanical properties and sustainability. Laboratory tests reveal that the mix of 25% RAP + 75% Type 1 exhibits exceptional flexibility, evidenced by a high ductility value of 880 mm at 25 °C, enhancing pavement resilience. Conversely, the 50% RAP + 50% Type 2 mixture displays vulnerability to fatigue cracking, while 25% RAP + 75% Type 1 demonstrates superior resistance, with a fatigue vulnerability value of 1524 kPa. The Hamburg Wheel Tracking test highlights the influence of RAP content on rut depth, with the mix of 50% RAP + 50% Type 1 achieving the lowest rutting at 3.9 mm. Overlay test results show the mix of 25% RAP + 75% Type 2’s resilience, with the lowest load reduction at 64.5%, while the mix of 50% RAP + 50% Type 1 exhibits substantial load reduction at 82.1%. Field tests unveil differences in pavement bearing capacities, with the mix of 25% RAP + 75% Type 2 demonstrating a remarkable elastic modulus of 58.5 MPa, indicating heightened bearing capacity. The investigation underscores the significant role of SBS-modified asphalt binders with incorporated petroleum resin and oil in enhancing fatigue resistance for sustainable rural pavements.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14010116\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14010116","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
本研究探讨了改善农村路面沥青混合料的必要性,重点是优化含有苯乙烯-丁二烯-苯乙烯(SBS)改性沥青粘结剂(含石油树脂和石油)的 RAP 混合料。该研究通过系统调查,研究了不同 RAP 含量(25% 和 50%)和两种 SBS 改性沥青胶结料类型(1 型和 2 型)对机械性能和可持续性的影响。实验室测试表明,25% RAP + 75% Type 1 的混合料具有优异的柔韧性,在 25 °C 时的延度值高达 880 mm,从而增强了路面的弹性。相反,50% RAP + 50% Type 2 混合料易出现疲劳开裂,而 25% RAP + 75% Type 1 则表现出卓越的抗压性能,疲劳易损值为 1524 kPa。汉堡车轮跟踪测试凸显了 RAP 含量对车辙深度的影响,50% RAP + 50% 1 型混合料的车辙深度最低,仅为 3.9 毫米。覆盖层测试结果表明,25% RAP + 75% Type 2 混合料具有弹性,荷载降低率最低,为 64.5%,而 50% RAP + 50% Type 1 混合料的荷载降低率则高达 82.1%。现场测试揭示了路面承载能力的差异,25% RAP + 75% Type 2 混合料的弹性模量高达 58.5 兆帕,显示出更高的承载能力。这项调查强调了加入石油树脂和石油的 SBS 改性沥青胶结料在增强可持续农村路面抗疲劳性方面的重要作用。
Optimizing Rural Pavements with SBS-Modified Asphalt Binders and Petroleum Resin
This study addresses the imperative for enhancing asphalt mixtures tailored for rural pavements, focusing on optimizing RAP mixtures with styrene–butadiene–styrene (SBS)-modified asphalt binders incorporating petroleum resin and oil. Through systematic investigation, the study examines the impact of varying RAP content (25% and 50%) and two SBS-modified asphalt binder types (Type 1 and Type 2) on mechanical properties and sustainability. Laboratory tests reveal that the mix of 25% RAP + 75% Type 1 exhibits exceptional flexibility, evidenced by a high ductility value of 880 mm at 25 °C, enhancing pavement resilience. Conversely, the 50% RAP + 50% Type 2 mixture displays vulnerability to fatigue cracking, while 25% RAP + 75% Type 1 demonstrates superior resistance, with a fatigue vulnerability value of 1524 kPa. The Hamburg Wheel Tracking test highlights the influence of RAP content on rut depth, with the mix of 50% RAP + 50% Type 1 achieving the lowest rutting at 3.9 mm. Overlay test results show the mix of 25% RAP + 75% Type 2’s resilience, with the lowest load reduction at 64.5%, while the mix of 50% RAP + 50% Type 1 exhibits substantial load reduction at 82.1%. Field tests unveil differences in pavement bearing capacities, with the mix of 25% RAP + 75% Type 2 demonstrating a remarkable elastic modulus of 58.5 MPa, indicating heightened bearing capacity. The investigation underscores the significant role of SBS-modified asphalt binders with incorporated petroleum resin and oil in enhancing fatigue resistance for sustainable rural pavements.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates