Ming-Gin Lee, Y. Wang, Wei-Chien Wang, Yi-Cheng Hsieh
{"title":"高强度纤维增强透水混凝土的磨损与维护","authors":"Ming-Gin Lee, Y. Wang, Wei-Chien Wang, Yi-Cheng Hsieh","doi":"10.3390/buildings14010127","DOIUrl":null,"url":null,"abstract":"This study examines the properties of ordinary and high-strength fiber-reinforced pervious concrete, aiming for a 28-day compressive strength exceeding 40 MPa with a target porosity close to 15%. Utilizing glass fiber (at 0.25% and 0.5% volume ratios) and steel fiber (at 1% and 2%), the study conducts mechanical and abrasion resistance testing on pervious concrete specimens. Sand dust clogging experimental simulations assess permeability coefficients for both application and maintenance purposes, revealing optimized maintenance, including vacuum cleaning and high-pressure washing, can restore water permeability to over 60%. The specific mix designs demonstrate high-strength pervious concrete achieves a 28-day compressive strength ranging from 40 to 52 MPa, with corresponding porosities ranging from 7% to 16%. Results highlight the significant impact of the ASTM C1747 impact abrasion test, where ordinary pervious concrete exhibits a cumulative impact abrasion rate reaching 60%, contrasting with approximately 20% for other high-strength specimens.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":"48 13","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abrasion and Maintenance of High-Strength Fiber-Reinforced Pervious Concrete\",\"authors\":\"Ming-Gin Lee, Y. Wang, Wei-Chien Wang, Yi-Cheng Hsieh\",\"doi\":\"10.3390/buildings14010127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines the properties of ordinary and high-strength fiber-reinforced pervious concrete, aiming for a 28-day compressive strength exceeding 40 MPa with a target porosity close to 15%. Utilizing glass fiber (at 0.25% and 0.5% volume ratios) and steel fiber (at 1% and 2%), the study conducts mechanical and abrasion resistance testing on pervious concrete specimens. Sand dust clogging experimental simulations assess permeability coefficients for both application and maintenance purposes, revealing optimized maintenance, including vacuum cleaning and high-pressure washing, can restore water permeability to over 60%. The specific mix designs demonstrate high-strength pervious concrete achieves a 28-day compressive strength ranging from 40 to 52 MPa, with corresponding porosities ranging from 7% to 16%. Results highlight the significant impact of the ASTM C1747 impact abrasion test, where ordinary pervious concrete exhibits a cumulative impact abrasion rate reaching 60%, contrasting with approximately 20% for other high-strength specimens.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":\"48 13\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14010127\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14010127","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Abrasion and Maintenance of High-Strength Fiber-Reinforced Pervious Concrete
This study examines the properties of ordinary and high-strength fiber-reinforced pervious concrete, aiming for a 28-day compressive strength exceeding 40 MPa with a target porosity close to 15%. Utilizing glass fiber (at 0.25% and 0.5% volume ratios) and steel fiber (at 1% and 2%), the study conducts mechanical and abrasion resistance testing on pervious concrete specimens. Sand dust clogging experimental simulations assess permeability coefficients for both application and maintenance purposes, revealing optimized maintenance, including vacuum cleaning and high-pressure washing, can restore water permeability to over 60%. The specific mix designs demonstrate high-strength pervious concrete achieves a 28-day compressive strength ranging from 40 to 52 MPa, with corresponding porosities ranging from 7% to 16%. Results highlight the significant impact of the ASTM C1747 impact abrasion test, where ordinary pervious concrete exhibits a cumulative impact abrasion rate reaching 60%, contrasting with approximately 20% for other high-strength specimens.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates