喷嘴配置对喷雾干燥机性能的影响

Q3 Engineering
Ashraf Ali Basheer, Singh Sunil Kumar
{"title":"喷嘴配置对喷雾干燥机性能的影响","authors":"Ashraf Ali Basheer, Singh Sunil Kumar","doi":"10.59957/jctm.v59.i1.2024.14","DOIUrl":null,"url":null,"abstract":"In this work, hydrodynamics and drying characteristics of spray dryer is numerically investigated using computational fluid dynamics (CFD) using Euler-Lagrangian (EL) approach. The gas phase is modelled as the continuous phase and solid particle as the dispersed phase. The turbulence in the gas phase is predicted using RNG version of k-ε model. As air flow pattern influences the time spent by particle in drying chamber, the spatial variation of air velocity and its circulation rate is quantified. Accordingly, optimum conditions for drying the feed slurry are determined. Further, five different outlet pipe locations are chosen and the optimum location is identified which supports the highest evaporation rate. To improve the product quality, conventional nozzle is modified and particle impact positions are analyzed. The particles impact positions on the dryer’s surface are found to be minimum for the proposed nozzle configuration and it improves the final product quality.","PeriodicalId":38363,"journal":{"name":"Journal of Chemical Technology and Metallurgy","volume":"39 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EFFECT OF NOZZLE CONFIGURATION ON PERFORMANCE OF A SPRAY DRYER\",\"authors\":\"Ashraf Ali Basheer, Singh Sunil Kumar\",\"doi\":\"10.59957/jctm.v59.i1.2024.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, hydrodynamics and drying characteristics of spray dryer is numerically investigated using computational fluid dynamics (CFD) using Euler-Lagrangian (EL) approach. The gas phase is modelled as the continuous phase and solid particle as the dispersed phase. The turbulence in the gas phase is predicted using RNG version of k-ε model. As air flow pattern influences the time spent by particle in drying chamber, the spatial variation of air velocity and its circulation rate is quantified. Accordingly, optimum conditions for drying the feed slurry are determined. Further, five different outlet pipe locations are chosen and the optimum location is identified which supports the highest evaporation rate. To improve the product quality, conventional nozzle is modified and particle impact positions are analyzed. The particles impact positions on the dryer’s surface are found to be minimum for the proposed nozzle configuration and it improves the final product quality.\",\"PeriodicalId\":38363,\"journal\":{\"name\":\"Journal of Chemical Technology and Metallurgy\",\"volume\":\"39 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Technology and Metallurgy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59957/jctm.v59.i1.2024.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Technology and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59957/jctm.v59.i1.2024.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用欧拉-拉格朗日(EL)方法,利用计算流体动力学(CFD)对喷雾干燥机的流体动力学和干燥特性进行了数值研究。气相被模拟为连续相,固体颗粒被模拟为分散相。气相中的湍流是使用 RNG 版本的 k-ε 模型预测的。由于气流模式会影响颗粒在干燥室中的停留时间,因此对气流速度及其循环速率的空间变化进行了量化。因此,确定了进料浆干燥的最佳条件。此外,还选择了五个不同的出口管道位置,并确定了支持最高蒸发率的最佳位置。为了提高产品质量,对传统的喷嘴进行了改进,并对颗粒的撞击位置进行了分析。结果发现,在拟议的喷嘴配置中,颗粒在干燥器表面的撞击位置最小,从而提高了最终产品质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EFFECT OF NOZZLE CONFIGURATION ON PERFORMANCE OF A SPRAY DRYER
In this work, hydrodynamics and drying characteristics of spray dryer is numerically investigated using computational fluid dynamics (CFD) using Euler-Lagrangian (EL) approach. The gas phase is modelled as the continuous phase and solid particle as the dispersed phase. The turbulence in the gas phase is predicted using RNG version of k-ε model. As air flow pattern influences the time spent by particle in drying chamber, the spatial variation of air velocity and its circulation rate is quantified. Accordingly, optimum conditions for drying the feed slurry are determined. Further, five different outlet pipe locations are chosen and the optimum location is identified which supports the highest evaporation rate. To improve the product quality, conventional nozzle is modified and particle impact positions are analyzed. The particles impact positions on the dryer’s surface are found to be minimum for the proposed nozzle configuration and it improves the final product quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Technology and Metallurgy
Journal of Chemical Technology and Metallurgy Engineering-Industrial and Manufacturing Engineering
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信