{"title":"列车运行期间建筑物振动测量与预测","authors":"Lingshan He, Ziyu Tao","doi":"10.3390/buildings14010142","DOIUrl":null,"url":null,"abstract":"Urban societies face the challenge of working and living in environments filled with vibration caused by transportation systems. This paper conducted field measurements to obtain the characteristics of vibration transmission from soil to building foundations and within building floors. Subsequently, a prediction method was developed to anticipate building vibrations by considering the soil and structure interaction. The rigid foundation model was simplified into a foundation–soil system connected via spring damping, and the building model is based on axial wave transmission within the columns and attached floors. Building vibrations were in response to measured input vibration levels at the ground and were validated through field measurements. The influence of different building heights on soil and structure vibration propagation was studied. The results showed that the predicted vibrations match well with the measured vibrations. The proposed prediction model can reasonably predict the building vibration caused by train operations. The closed-form method is an efficient tool for predicting floor vibrations prior to construction.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":"55 21","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building Vibration Measurement and Prediction during Train Operations\",\"authors\":\"Lingshan He, Ziyu Tao\",\"doi\":\"10.3390/buildings14010142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban societies face the challenge of working and living in environments filled with vibration caused by transportation systems. This paper conducted field measurements to obtain the characteristics of vibration transmission from soil to building foundations and within building floors. Subsequently, a prediction method was developed to anticipate building vibrations by considering the soil and structure interaction. The rigid foundation model was simplified into a foundation–soil system connected via spring damping, and the building model is based on axial wave transmission within the columns and attached floors. Building vibrations were in response to measured input vibration levels at the ground and were validated through field measurements. The influence of different building heights on soil and structure vibration propagation was studied. The results showed that the predicted vibrations match well with the measured vibrations. The proposed prediction model can reasonably predict the building vibration caused by train operations. The closed-form method is an efficient tool for predicting floor vibrations prior to construction.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":\"55 21\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14010142\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14010142","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Building Vibration Measurement and Prediction during Train Operations
Urban societies face the challenge of working and living in environments filled with vibration caused by transportation systems. This paper conducted field measurements to obtain the characteristics of vibration transmission from soil to building foundations and within building floors. Subsequently, a prediction method was developed to anticipate building vibrations by considering the soil and structure interaction. The rigid foundation model was simplified into a foundation–soil system connected via spring damping, and the building model is based on axial wave transmission within the columns and attached floors. Building vibrations were in response to measured input vibration levels at the ground and were validated through field measurements. The influence of different building heights on soil and structure vibration propagation was studied. The results showed that the predicted vibrations match well with the measured vibrations. The proposed prediction model can reasonably predict the building vibration caused by train operations. The closed-form method is an efficient tool for predicting floor vibrations prior to construction.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates