{"title":"量化全叶季节街道绿化对情绪感知的影响:居民福祉指南","authors":"Nayi Hao, Xinzhou Li, Danping Han, Wenbin Nie","doi":"10.3390/f15010119","DOIUrl":null,"url":null,"abstract":"Quantifying the emotional impact of street greening during the full-leaf seasons in spring, summer, and fall is important for well-being-focused urban construction. Current emotional perception models usually focus on the influence of objects identified through semantic segmentation of street view images and lack explanation. Therefore, interpretability models that quantify street greening’s emotional effects are needed. This study aims to measure and explain the influence of street greening on emotions to help urban planners make decisions. This would improve the living environment, foster positive emotions, and help residents recover from negative emotions. In Hangzhou, China, we used the Baidu Map API to obtain street view images when plants were in the full-leaf state. Semantic segmentation was used to separate plant parts from street view images, enabling the calculation of the Green View Index, Plant Level Diversity, Plant Color Richness, and Tree–Sky View Factor. We created a dataset specifically designed for the purpose of emotional perception, including four distinct categories: pleasure, relaxation, boredom, and anxiety. This dataset was generated through a combination of machine learning algorithms and human evaluation. Scores range from 1 to 5, with higher values indicating stronger emotions and lower values indicating less intense ones. The random forest model and Shapley Additive Explanation (SHAP) algorithm were employed to identify the key indicators that affect emotions. Emotions were most affected by the Plant Level Diversity and Green View Index. These indicators and emotions have an intricate non-linear relationship. Specifically, a higher Green View Index (often indicating the presence of 20–35 fully grown trees within a 200 m range in street view images) and a greater Plant Level Diversity significantly promoted positive emotional responses. Our study provided local planning departments with support for well-being-focused urban planning and renewal decisions. Based on our research, we recommend the following actions: (1) increase the amount of visible green in areas with a low Green View Index; (2) plant seasonal and flowering plants like camellia, ginkgo, and goldenrain trees to enhance the diversity and colors; (3) trim plants in areas with low safety perception to improve visibility; (4) introduce evergreen plants like cinnamomum camphor, osmanthus, and pine.","PeriodicalId":12339,"journal":{"name":"Forests","volume":"65 5","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying the Impact of Street Greening during Full-Leaf Seasons on Emotional Perception: Guidelines for Resident Well-Being\",\"authors\":\"Nayi Hao, Xinzhou Li, Danping Han, Wenbin Nie\",\"doi\":\"10.3390/f15010119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantifying the emotional impact of street greening during the full-leaf seasons in spring, summer, and fall is important for well-being-focused urban construction. Current emotional perception models usually focus on the influence of objects identified through semantic segmentation of street view images and lack explanation. Therefore, interpretability models that quantify street greening’s emotional effects are needed. This study aims to measure and explain the influence of street greening on emotions to help urban planners make decisions. This would improve the living environment, foster positive emotions, and help residents recover from negative emotions. In Hangzhou, China, we used the Baidu Map API to obtain street view images when plants were in the full-leaf state. Semantic segmentation was used to separate plant parts from street view images, enabling the calculation of the Green View Index, Plant Level Diversity, Plant Color Richness, and Tree–Sky View Factor. We created a dataset specifically designed for the purpose of emotional perception, including four distinct categories: pleasure, relaxation, boredom, and anxiety. This dataset was generated through a combination of machine learning algorithms and human evaluation. Scores range from 1 to 5, with higher values indicating stronger emotions and lower values indicating less intense ones. The random forest model and Shapley Additive Explanation (SHAP) algorithm were employed to identify the key indicators that affect emotions. Emotions were most affected by the Plant Level Diversity and Green View Index. These indicators and emotions have an intricate non-linear relationship. Specifically, a higher Green View Index (often indicating the presence of 20–35 fully grown trees within a 200 m range in street view images) and a greater Plant Level Diversity significantly promoted positive emotional responses. Our study provided local planning departments with support for well-being-focused urban planning and renewal decisions. Based on our research, we recommend the following actions: (1) increase the amount of visible green in areas with a low Green View Index; (2) plant seasonal and flowering plants like camellia, ginkgo, and goldenrain trees to enhance the diversity and colors; (3) trim plants in areas with low safety perception to improve visibility; (4) introduce evergreen plants like cinnamomum camphor, osmanthus, and pine.\",\"PeriodicalId\":12339,\"journal\":{\"name\":\"Forests\",\"volume\":\"65 5\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forests\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/f15010119\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forests","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/f15010119","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Quantifying the Impact of Street Greening during Full-Leaf Seasons on Emotional Perception: Guidelines for Resident Well-Being
Quantifying the emotional impact of street greening during the full-leaf seasons in spring, summer, and fall is important for well-being-focused urban construction. Current emotional perception models usually focus on the influence of objects identified through semantic segmentation of street view images and lack explanation. Therefore, interpretability models that quantify street greening’s emotional effects are needed. This study aims to measure and explain the influence of street greening on emotions to help urban planners make decisions. This would improve the living environment, foster positive emotions, and help residents recover from negative emotions. In Hangzhou, China, we used the Baidu Map API to obtain street view images when plants were in the full-leaf state. Semantic segmentation was used to separate plant parts from street view images, enabling the calculation of the Green View Index, Plant Level Diversity, Plant Color Richness, and Tree–Sky View Factor. We created a dataset specifically designed for the purpose of emotional perception, including four distinct categories: pleasure, relaxation, boredom, and anxiety. This dataset was generated through a combination of machine learning algorithms and human evaluation. Scores range from 1 to 5, with higher values indicating stronger emotions and lower values indicating less intense ones. The random forest model and Shapley Additive Explanation (SHAP) algorithm were employed to identify the key indicators that affect emotions. Emotions were most affected by the Plant Level Diversity and Green View Index. These indicators and emotions have an intricate non-linear relationship. Specifically, a higher Green View Index (often indicating the presence of 20–35 fully grown trees within a 200 m range in street view images) and a greater Plant Level Diversity significantly promoted positive emotional responses. Our study provided local planning departments with support for well-being-focused urban planning and renewal decisions. Based on our research, we recommend the following actions: (1) increase the amount of visible green in areas with a low Green View Index; (2) plant seasonal and flowering plants like camellia, ginkgo, and goldenrain trees to enhance the diversity and colors; (3) trim plants in areas with low safety perception to improve visibility; (4) introduce evergreen plants like cinnamomum camphor, osmanthus, and pine.
期刊介绍:
Forests (ISSN 1999-4907) is an international and cross-disciplinary scholarly journal of forestry and forest ecology. It publishes research papers, short communications and review papers. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.