Valquíria J. M. Pinheiro, Jenny D. Gómez, Angélica S. Gouveia, Flaviane S. Coutinho, Ruan M. Teixeira, Virgílio A. P. Loriato, Edvaldo Barros, Anna Carolina H. Moreira, Camilo E. Vital, André L. Lourenção, Elizabeth P. B. Fontes, Maria Goreti A. Oliveira, Humberto J. O. Ramos
{"title":"巴西大豆基因型的基因表达、蛋白质组和代谢图谱揭示了抵抗天鹅绒豆毛虫 Anticarsia gemmatalis 的可能机制","authors":"Valquíria J. M. Pinheiro, Jenny D. Gómez, Angélica S. Gouveia, Flaviane S. Coutinho, Ruan M. Teixeira, Virgílio A. P. Loriato, Edvaldo Barros, Anna Carolina H. Moreira, Camilo E. Vital, André L. Lourenção, Elizabeth P. B. Fontes, Maria Goreti A. Oliveira, Humberto J. O. Ramos","doi":"10.1007/s11829-023-10030-9","DOIUrl":null,"url":null,"abstract":"<div><p>Brazil is the world’s largest producer of soybeans, and the crop is one of the most important contributors to the economy. Soybeans often suffer damage from insect pests, such as <i>Anticarsia gemmatalis</i>, which also attacks other crops. Genotypes of soybeans have been used to decipher the resistance mechanisms by evaluating the activity of defense compounds such as protease inhibitors (PIs) and flavonols. However, the genetic determinants of resistance have not been thoroughly investigated. This study used the response of resistant and susceptible genotypes of soybean to evaluate genes and proteins responsive to caterpillar attack and involved in the biosynthesis of methylated and glycosylated flavonols. Rutin and isorhamnetin rutinoside were produced constitutively in the resistant genotypes IAC 17 and IAC 100. Following insect attack, genes encoding flavonol synthase and methyltransferases were highly upregulated in IAC 17. Some herbivory defense responses appear constitutive, while others were induced or JA-independent, as verified for flavonol levels. Salicylic acid levels were higher in IAC 17 and IAC 100. Proteins not yet characterized for their involvement in plant–insect interactions, such as transmembrane receptors and transcription factors, were upregulated in the resistant genotype IAC 17. It appears constitutive flavonol biosynthesis in both IAC 17 and IAC 100 was inherited from the PI229358 parent, making the two genotypes good genetic sources to study flavonol biosynthesis and their relationship with insect resistance.</p></div>","PeriodicalId":8409,"journal":{"name":"Arthropod-Plant Interactions","volume":"18 1","pages":"15 - 32"},"PeriodicalIF":1.2000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene expression, proteomic, and metabolic profiles of Brazilian soybean genotypes reveal a possible mechanism of resistance to the velvet bean caterpillar Anticarsia gemmatalis\",\"authors\":\"Valquíria J. M. Pinheiro, Jenny D. Gómez, Angélica S. Gouveia, Flaviane S. Coutinho, Ruan M. Teixeira, Virgílio A. P. Loriato, Edvaldo Barros, Anna Carolina H. Moreira, Camilo E. Vital, André L. Lourenção, Elizabeth P. B. Fontes, Maria Goreti A. Oliveira, Humberto J. O. Ramos\",\"doi\":\"10.1007/s11829-023-10030-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Brazil is the world’s largest producer of soybeans, and the crop is one of the most important contributors to the economy. Soybeans often suffer damage from insect pests, such as <i>Anticarsia gemmatalis</i>, which also attacks other crops. Genotypes of soybeans have been used to decipher the resistance mechanisms by evaluating the activity of defense compounds such as protease inhibitors (PIs) and flavonols. However, the genetic determinants of resistance have not been thoroughly investigated. This study used the response of resistant and susceptible genotypes of soybean to evaluate genes and proteins responsive to caterpillar attack and involved in the biosynthesis of methylated and glycosylated flavonols. Rutin and isorhamnetin rutinoside were produced constitutively in the resistant genotypes IAC 17 and IAC 100. Following insect attack, genes encoding flavonol synthase and methyltransferases were highly upregulated in IAC 17. Some herbivory defense responses appear constitutive, while others were induced or JA-independent, as verified for flavonol levels. Salicylic acid levels were higher in IAC 17 and IAC 100. Proteins not yet characterized for their involvement in plant–insect interactions, such as transmembrane receptors and transcription factors, were upregulated in the resistant genotype IAC 17. It appears constitutive flavonol biosynthesis in both IAC 17 and IAC 100 was inherited from the PI229358 parent, making the two genotypes good genetic sources to study flavonol biosynthesis and their relationship with insect resistance.</p></div>\",\"PeriodicalId\":8409,\"journal\":{\"name\":\"Arthropod-Plant Interactions\",\"volume\":\"18 1\",\"pages\":\"15 - 32\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arthropod-Plant Interactions\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11829-023-10030-9\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthropod-Plant Interactions","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11829-023-10030-9","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Gene expression, proteomic, and metabolic profiles of Brazilian soybean genotypes reveal a possible mechanism of resistance to the velvet bean caterpillar Anticarsia gemmatalis
Brazil is the world’s largest producer of soybeans, and the crop is one of the most important contributors to the economy. Soybeans often suffer damage from insect pests, such as Anticarsia gemmatalis, which also attacks other crops. Genotypes of soybeans have been used to decipher the resistance mechanisms by evaluating the activity of defense compounds such as protease inhibitors (PIs) and flavonols. However, the genetic determinants of resistance have not been thoroughly investigated. This study used the response of resistant and susceptible genotypes of soybean to evaluate genes and proteins responsive to caterpillar attack and involved in the biosynthesis of methylated and glycosylated flavonols. Rutin and isorhamnetin rutinoside were produced constitutively in the resistant genotypes IAC 17 and IAC 100. Following insect attack, genes encoding flavonol synthase and methyltransferases were highly upregulated in IAC 17. Some herbivory defense responses appear constitutive, while others were induced or JA-independent, as verified for flavonol levels. Salicylic acid levels were higher in IAC 17 and IAC 100. Proteins not yet characterized for their involvement in plant–insect interactions, such as transmembrane receptors and transcription factors, were upregulated in the resistant genotype IAC 17. It appears constitutive flavonol biosynthesis in both IAC 17 and IAC 100 was inherited from the PI229358 parent, making the two genotypes good genetic sources to study flavonol biosynthesis and their relationship with insect resistance.
期刊介绍:
Arthropod-Plant Interactions is dedicated to publishing high quality original papers and reviews with a broad fundamental or applied focus on ecological, biological, and evolutionary aspects of the interactions between insects and other arthropods with plants. Coverage extends to all aspects of such interactions including chemical, biochemical, genetic, and molecular analysis, as well reporting on multitrophic studies, ecophysiology, and mutualism.
Arthropod-Plant Interactions encourages the submission of forum papers that challenge prevailing hypotheses. The journal encourages a diversity of opinion by presenting both invited and unsolicited review papers.