关于有限σ可溶PσT群的一些类别

I. N. Safonova, A. Skiba
{"title":"关于有限σ可溶PσT群的一些类别","authors":"I. N. Safonova, A. Skiba","doi":"10.29235/1561-83232023-67-6-460-464","DOIUrl":null,"url":null,"abstract":"Let X be a class of groups. Suppose that with each group G ∈ X we associate some system of its subgroups τ(G). Then τ is said to be a subgroup functor on X if the following conditions are hold: (1) G ∈  τ(G) for each group G ∈ X; (2) for any epimorphism φ: A → B, where A, B ∈ X, and for any groups H ∈ τ(A) and T ∈ τ(B) we have Hφ ∈ τ(B) and Tφ-1 ∈ τ( A). In this paper, were considered some applications of such subgroup functors in the theory of finite groups in which generalized normality for subgroups is transitive.","PeriodicalId":11283,"journal":{"name":"Doklady of the National Academy of Sciences of Belarus","volume":"61 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some classes of finite σ-soluble PσT-groups\",\"authors\":\"I. N. Safonova, A. Skiba\",\"doi\":\"10.29235/1561-83232023-67-6-460-464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let X be a class of groups. Suppose that with each group G ∈ X we associate some system of its subgroups τ(G). Then τ is said to be a subgroup functor on X if the following conditions are hold: (1) G ∈  τ(G) for each group G ∈ X; (2) for any epimorphism φ: A → B, where A, B ∈ X, and for any groups H ∈ τ(A) and T ∈ τ(B) we have Hφ ∈ τ(B) and Tφ-1 ∈ τ( A). In this paper, were considered some applications of such subgroup functors in the theory of finite groups in which generalized normality for subgroups is transitive.\",\"PeriodicalId\":11283,\"journal\":{\"name\":\"Doklady of the National Academy of Sciences of Belarus\",\"volume\":\"61 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady of the National Academy of Sciences of Belarus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1561-83232023-67-6-460-464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady of the National Academy of Sciences of Belarus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-83232023-67-6-460-464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 X 是一类群。假设每个群 G∈X 都与它的子群 τ(G) 关联。那么,如果以下条件成立,我们就说 τ 是 X 上的一个子群函子:(1)对于每个群 G∈X,G∈τ(G);(2)对于任何外形变 φ:A→B,其中 A,B∈X,对于任何群 H∈τ(A) 和 T∈τ(B) 我们有 Hφ∈τ(B) 和 Tφ-1∈τ( A)。本文考虑了这种子群函数在有限群理论中的一些应用,在有限群理论中,子群的广义正则性是反式的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some classes of finite σ-soluble PσT-groups
Let X be a class of groups. Suppose that with each group G ∈ X we associate some system of its subgroups τ(G). Then τ is said to be a subgroup functor on X if the following conditions are hold: (1) G ∈  τ(G) for each group G ∈ X; (2) for any epimorphism φ: A → B, where A, B ∈ X, and for any groups H ∈ τ(A) and T ∈ τ(B) we have Hφ ∈ τ(B) and Tφ-1 ∈ τ( A). In this paper, were considered some applications of such subgroup functors in the theory of finite groups in which generalized normality for subgroups is transitive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信