E. Roszyk, Radosław Kropaczewski, P. Mania, M. Broda
{"title":"竹子(Phyllostachys pubescens)的膨胀行为","authors":"E. Roszyk, Radosław Kropaczewski, P. Mania, M. Broda","doi":"10.3390/f15010118","DOIUrl":null,"url":null,"abstract":"Bamboo is a plant with various applications. As a natural, renewable material that exhibits good mechanical performance, it seems to be an interesting alternative to wood, which has become a scarce and expensive commodity. However, comprehensive knowledge of its properties is necessary to maximise its potential for various industrial purposes. The swelling behaviour of bamboo is one of the features that has not yet been sufficiently investigated. Therefore, in this research, we aimed to measure and analyse the swelling pressure and kinetics of bamboo blocks. The results show that similar to wood, the swelling kinetics of bamboo depend on its density: the denser the tissue, the higher the maximum swelling value recorded. The maximum tangential swelling measured was about 5%–6%, which is lower than the value for the most commonly used wood species. Swelling pressure ranged from 1.16 MPa to 1.39 MPa, depending on the bamboo density: the denser the sample, the shorter the time required to reach maximum swelling pressure. Like in wood, the smallest linear increase in size due to swelling was observed in the longitudinal direction (0.71%). However, opposite to wood, more pronounced swelling was recorded in the radial direction (over 7%) than in the tangential direction (nearly 6%). The results show that bamboo’s swelling behaviour makes it a good material for use in variable humidity conditions, being more favourable than the unmodified wood of many species.","PeriodicalId":12339,"journal":{"name":"Forests","volume":"33 23","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Swelling Behaviour of Bamboo (Phyllostachys pubescens)\",\"authors\":\"E. Roszyk, Radosław Kropaczewski, P. Mania, M. Broda\",\"doi\":\"10.3390/f15010118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bamboo is a plant with various applications. As a natural, renewable material that exhibits good mechanical performance, it seems to be an interesting alternative to wood, which has become a scarce and expensive commodity. However, comprehensive knowledge of its properties is necessary to maximise its potential for various industrial purposes. The swelling behaviour of bamboo is one of the features that has not yet been sufficiently investigated. Therefore, in this research, we aimed to measure and analyse the swelling pressure and kinetics of bamboo blocks. The results show that similar to wood, the swelling kinetics of bamboo depend on its density: the denser the tissue, the higher the maximum swelling value recorded. The maximum tangential swelling measured was about 5%–6%, which is lower than the value for the most commonly used wood species. Swelling pressure ranged from 1.16 MPa to 1.39 MPa, depending on the bamboo density: the denser the sample, the shorter the time required to reach maximum swelling pressure. Like in wood, the smallest linear increase in size due to swelling was observed in the longitudinal direction (0.71%). However, opposite to wood, more pronounced swelling was recorded in the radial direction (over 7%) than in the tangential direction (nearly 6%). The results show that bamboo’s swelling behaviour makes it a good material for use in variable humidity conditions, being more favourable than the unmodified wood of many species.\",\"PeriodicalId\":12339,\"journal\":{\"name\":\"Forests\",\"volume\":\"33 23\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forests\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/f15010118\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forests","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/f15010118","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Swelling Behaviour of Bamboo (Phyllostachys pubescens)
Bamboo is a plant with various applications. As a natural, renewable material that exhibits good mechanical performance, it seems to be an interesting alternative to wood, which has become a scarce and expensive commodity. However, comprehensive knowledge of its properties is necessary to maximise its potential for various industrial purposes. The swelling behaviour of bamboo is one of the features that has not yet been sufficiently investigated. Therefore, in this research, we aimed to measure and analyse the swelling pressure and kinetics of bamboo blocks. The results show that similar to wood, the swelling kinetics of bamboo depend on its density: the denser the tissue, the higher the maximum swelling value recorded. The maximum tangential swelling measured was about 5%–6%, which is lower than the value for the most commonly used wood species. Swelling pressure ranged from 1.16 MPa to 1.39 MPa, depending on the bamboo density: the denser the sample, the shorter the time required to reach maximum swelling pressure. Like in wood, the smallest linear increase in size due to swelling was observed in the longitudinal direction (0.71%). However, opposite to wood, more pronounced swelling was recorded in the radial direction (over 7%) than in the tangential direction (nearly 6%). The results show that bamboo’s swelling behaviour makes it a good material for use in variable humidity conditions, being more favourable than the unmodified wood of many species.
期刊介绍:
Forests (ISSN 1999-4907) is an international and cross-disciplinary scholarly journal of forestry and forest ecology. It publishes research papers, short communications and review papers. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.