{"title":"利用谷歌地球引擎监测土壤盐度的时空分布,检测易受盐风暴影响的盐碱地区","authors":"Mohammad Kazemi Kazemi Garajeh","doi":"10.3390/pollutants4010001","DOIUrl":null,"url":null,"abstract":"Recent droughts worldwide have significantly affected ecosystems in various regions. Among these affected areas, the Lake Urmia Basin (LUB) has experienced substantial effects from both drought and human activity in recent years. Lake Urmia, known as one of the hypersaline lakes globally, has been particularly influenced by these activities. The extraction of water since 1995 has resulted in an increase in the extent of salty land, leading to the frequent occurrence of salt storms. To address this issue, the current study utilized various machine learning algorithms within the Google Earth Engine (GEE) platform to map the probability of saline storm occurrences. Landsat time-series images spanning from 2000 to 2022 were employed. Soil salinity indices, Ground Points (GPs), and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products were utilized to prepare the training data, which served as input for constructing and running the models. The results demonstrated that the Support Vector Machine (SVM) performed effectively in identifying the probability of saline storm occurrence areas, achieving high R2 values of 91.12%, 90.45%, 91.78%, and 91.65% for the years 2000, 2010, 2015, and 2022, respectively. Additionally, the findings reveal an increase in areas exhibiting a very high probability of saline storm occurrences from 2000 to 2022. In summary, the results of this study indicate that the frequency of salt storms is expected to rise in the near future, owing to the increasing levels of soil salinity resources within the Lake Urmia Basin.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring the Spatio-Temporal Distribution of Soil Salinity Using Google Earth Engine for Detecting the Saline Areas Susceptible to Salt Storm Occurrence\",\"authors\":\"Mohammad Kazemi Kazemi Garajeh\",\"doi\":\"10.3390/pollutants4010001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent droughts worldwide have significantly affected ecosystems in various regions. Among these affected areas, the Lake Urmia Basin (LUB) has experienced substantial effects from both drought and human activity in recent years. Lake Urmia, known as one of the hypersaline lakes globally, has been particularly influenced by these activities. The extraction of water since 1995 has resulted in an increase in the extent of salty land, leading to the frequent occurrence of salt storms. To address this issue, the current study utilized various machine learning algorithms within the Google Earth Engine (GEE) platform to map the probability of saline storm occurrences. Landsat time-series images spanning from 2000 to 2022 were employed. Soil salinity indices, Ground Points (GPs), and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products were utilized to prepare the training data, which served as input for constructing and running the models. The results demonstrated that the Support Vector Machine (SVM) performed effectively in identifying the probability of saline storm occurrence areas, achieving high R2 values of 91.12%, 90.45%, 91.78%, and 91.65% for the years 2000, 2010, 2015, and 2022, respectively. Additionally, the findings reveal an increase in areas exhibiting a very high probability of saline storm occurrences from 2000 to 2022. In summary, the results of this study indicate that the frequency of salt storms is expected to rise in the near future, owing to the increasing levels of soil salinity resources within the Lake Urmia Basin.\",\"PeriodicalId\":20301,\"journal\":{\"name\":\"Pollutants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pollutants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/pollutants4010001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pollutants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/pollutants4010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monitoring the Spatio-Temporal Distribution of Soil Salinity Using Google Earth Engine for Detecting the Saline Areas Susceptible to Salt Storm Occurrence
Recent droughts worldwide have significantly affected ecosystems in various regions. Among these affected areas, the Lake Urmia Basin (LUB) has experienced substantial effects from both drought and human activity in recent years. Lake Urmia, known as one of the hypersaline lakes globally, has been particularly influenced by these activities. The extraction of water since 1995 has resulted in an increase in the extent of salty land, leading to the frequent occurrence of salt storms. To address this issue, the current study utilized various machine learning algorithms within the Google Earth Engine (GEE) platform to map the probability of saline storm occurrences. Landsat time-series images spanning from 2000 to 2022 were employed. Soil salinity indices, Ground Points (GPs), and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products were utilized to prepare the training data, which served as input for constructing and running the models. The results demonstrated that the Support Vector Machine (SVM) performed effectively in identifying the probability of saline storm occurrence areas, achieving high R2 values of 91.12%, 90.45%, 91.78%, and 91.65% for the years 2000, 2010, 2015, and 2022, respectively. Additionally, the findings reveal an increase in areas exhibiting a very high probability of saline storm occurrences from 2000 to 2022. In summary, the results of this study indicate that the frequency of salt storms is expected to rise in the near future, owing to the increasing levels of soil salinity resources within the Lake Urmia Basin.