Nourhan Barakat, Fouad El Haj Hassan, Michel Kazan
{"title":"修改声错配模型和扩散错配模型以准确预测低温下的界面导热率","authors":"Nourhan Barakat, Fouad El Haj Hassan, Michel Kazan","doi":"10.1115/1.4064440","DOIUrl":null,"url":null,"abstract":"\n Houston's method for summing phonon modes in the Brillouin zone is applied to exclude specular transmission of phonon modes of specific symmetries, thus, modifying the Acoustic Mismatch Model when phonon heat flux is incident from a heavier to a lighter medium. The Houston method is also used to impose conservation of the number of phonons in each direction of high symmetry, thus modifying the detailed balance theorem and the Diffuse Mismatch Model. Based on the assumption that phonons are in equilibrium at the interface and are transmitted specularly or diffusely by two-phonon elastic processes, interpolation between the modified Acoustic Mismatch Model and the modified Diffuse Mismatch Model has led to a general analytical formalism for low-temperature interface thermal conductance. The Debye temperature, the only parameter in the derived formalism, is expressed as a function of temperature by assimilating numerically obtained specific heat values to the Debye expression for specific heat. Previous measurements of the thermal conductance of smooth and rough interfaces between dissimilar materials could be reproduced numerically without adjustment of model parameters, demonstrating the importance of modifications to the Acoustic Mismatch Model and the Diffuse Mismatch Model, and supporting the hypothesis that anharmonic processes play a minimal role in heat transport across interfaces below ambient temperature. The formalism developed is used to study the thermal conductance of the interface between silicon and germanium because of the potential of silicon-germanium nanocomposites for thermoelectric applications.","PeriodicalId":505153,"journal":{"name":"ASME Journal of Heat and Mass Transfer","volume":"1 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modification of the Acoustic Mismatch Model and Diffuse Mismatch Model for Accurate Prediction of Interface Thermal Conductance At Low Temperatures\",\"authors\":\"Nourhan Barakat, Fouad El Haj Hassan, Michel Kazan\",\"doi\":\"10.1115/1.4064440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Houston's method for summing phonon modes in the Brillouin zone is applied to exclude specular transmission of phonon modes of specific symmetries, thus, modifying the Acoustic Mismatch Model when phonon heat flux is incident from a heavier to a lighter medium. The Houston method is also used to impose conservation of the number of phonons in each direction of high symmetry, thus modifying the detailed balance theorem and the Diffuse Mismatch Model. Based on the assumption that phonons are in equilibrium at the interface and are transmitted specularly or diffusely by two-phonon elastic processes, interpolation between the modified Acoustic Mismatch Model and the modified Diffuse Mismatch Model has led to a general analytical formalism for low-temperature interface thermal conductance. The Debye temperature, the only parameter in the derived formalism, is expressed as a function of temperature by assimilating numerically obtained specific heat values to the Debye expression for specific heat. Previous measurements of the thermal conductance of smooth and rough interfaces between dissimilar materials could be reproduced numerically without adjustment of model parameters, demonstrating the importance of modifications to the Acoustic Mismatch Model and the Diffuse Mismatch Model, and supporting the hypothesis that anharmonic processes play a minimal role in heat transport across interfaces below ambient temperature. The formalism developed is used to study the thermal conductance of the interface between silicon and germanium because of the potential of silicon-germanium nanocomposites for thermoelectric applications.\",\"PeriodicalId\":505153,\"journal\":{\"name\":\"ASME Journal of Heat and Mass Transfer\",\"volume\":\"1 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Journal of Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modification of the Acoustic Mismatch Model and Diffuse Mismatch Model for Accurate Prediction of Interface Thermal Conductance At Low Temperatures
Houston's method for summing phonon modes in the Brillouin zone is applied to exclude specular transmission of phonon modes of specific symmetries, thus, modifying the Acoustic Mismatch Model when phonon heat flux is incident from a heavier to a lighter medium. The Houston method is also used to impose conservation of the number of phonons in each direction of high symmetry, thus modifying the detailed balance theorem and the Diffuse Mismatch Model. Based on the assumption that phonons are in equilibrium at the interface and are transmitted specularly or diffusely by two-phonon elastic processes, interpolation between the modified Acoustic Mismatch Model and the modified Diffuse Mismatch Model has led to a general analytical formalism for low-temperature interface thermal conductance. The Debye temperature, the only parameter in the derived formalism, is expressed as a function of temperature by assimilating numerically obtained specific heat values to the Debye expression for specific heat. Previous measurements of the thermal conductance of smooth and rough interfaces between dissimilar materials could be reproduced numerically without adjustment of model parameters, demonstrating the importance of modifications to the Acoustic Mismatch Model and the Diffuse Mismatch Model, and supporting the hypothesis that anharmonic processes play a minimal role in heat transport across interfaces below ambient temperature. The formalism developed is used to study the thermal conductance of the interface between silicon and germanium because of the potential of silicon-germanium nanocomposites for thermoelectric applications.