Zheng Li, Qiulei Zhang, F. Shi, Jian Wang, Hartmut Pasternak
{"title":"利用 3D 激光扫描技术测量具有稳定性和疲劳风险的钢部件的几何特性","authors":"Zheng Li, Qiulei Zhang, F. Shi, Jian Wang, Hartmut Pasternak","doi":"10.3390/buildings14010168","DOIUrl":null,"url":null,"abstract":"Nowadays, 3D laser scanning technology is extensively employed in laboratory investigations of steel structural components, providing accurate geometric dimensions to reduce uncertainties caused by indeterminate geometry in experimental results. It is often used in conjunction with the Finite Element (FE) Method and analytical solutions, which are more accurate deterministic operators in the research on steel structures. However, establishing a common methodological framework for transferring or mapping 3D-scanned information into finite element models for complex steel structures with stability and fatigue risks remains an ongoing task. In light of this, this study has developed a 3D scanning platform capable of obtaining accurate geometric dimensions for various types of steel components. Different coordinate systems and point cloud mapping algorithms have been established for different types of components to construct actual finite element models with initial imperfections. The feasibility of the self-developed 3D scanning platform and finite element modelling has been validated through three experimental cases: weld details, steel girders, and cylindrical shells. The research findings demonstrate that the captured point cloud can be automatically processed and corrected using the developed algorithm. The scanned data can then be input into the numerical model using various mapping algorithms tailored to the specific geometric properties of the specimens. The differences between the experimental test results and the simulated results obtained from the 3D-scanned finite element models remain within a small range. The self-developed 3D scanning platform and finite element modelling technique effectively capture the actual dimensions of different steel components, enabling the prediction of their stability and fatigue risks through numerical simulations.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":"5 7","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric Properties of Steel Components with Stability and Fatigue Risks Using 3D-Laser-Scanning\",\"authors\":\"Zheng Li, Qiulei Zhang, F. Shi, Jian Wang, Hartmut Pasternak\",\"doi\":\"10.3390/buildings14010168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, 3D laser scanning technology is extensively employed in laboratory investigations of steel structural components, providing accurate geometric dimensions to reduce uncertainties caused by indeterminate geometry in experimental results. It is often used in conjunction with the Finite Element (FE) Method and analytical solutions, which are more accurate deterministic operators in the research on steel structures. However, establishing a common methodological framework for transferring or mapping 3D-scanned information into finite element models for complex steel structures with stability and fatigue risks remains an ongoing task. In light of this, this study has developed a 3D scanning platform capable of obtaining accurate geometric dimensions for various types of steel components. Different coordinate systems and point cloud mapping algorithms have been established for different types of components to construct actual finite element models with initial imperfections. The feasibility of the self-developed 3D scanning platform and finite element modelling has been validated through three experimental cases: weld details, steel girders, and cylindrical shells. The research findings demonstrate that the captured point cloud can be automatically processed and corrected using the developed algorithm. The scanned data can then be input into the numerical model using various mapping algorithms tailored to the specific geometric properties of the specimens. The differences between the experimental test results and the simulated results obtained from the 3D-scanned finite element models remain within a small range. The self-developed 3D scanning platform and finite element modelling technique effectively capture the actual dimensions of different steel components, enabling the prediction of their stability and fatigue risks through numerical simulations.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":\"5 7\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14010168\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14010168","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Geometric Properties of Steel Components with Stability and Fatigue Risks Using 3D-Laser-Scanning
Nowadays, 3D laser scanning technology is extensively employed in laboratory investigations of steel structural components, providing accurate geometric dimensions to reduce uncertainties caused by indeterminate geometry in experimental results. It is often used in conjunction with the Finite Element (FE) Method and analytical solutions, which are more accurate deterministic operators in the research on steel structures. However, establishing a common methodological framework for transferring or mapping 3D-scanned information into finite element models for complex steel structures with stability and fatigue risks remains an ongoing task. In light of this, this study has developed a 3D scanning platform capable of obtaining accurate geometric dimensions for various types of steel components. Different coordinate systems and point cloud mapping algorithms have been established for different types of components to construct actual finite element models with initial imperfections. The feasibility of the self-developed 3D scanning platform and finite element modelling has been validated through three experimental cases: weld details, steel girders, and cylindrical shells. The research findings demonstrate that the captured point cloud can be automatically processed and corrected using the developed algorithm. The scanned data can then be input into the numerical model using various mapping algorithms tailored to the specific geometric properties of the specimens. The differences between the experimental test results and the simulated results obtained from the 3D-scanned finite element models remain within a small range. The self-developed 3D scanning platform and finite element modelling technique effectively capture the actual dimensions of different steel components, enabling the prediction of their stability and fatigue risks through numerical simulations.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates