Yi Qian, Chuyue Huang, Beilin Han, Fan Cheng, Shengqiang Qiu, Hongyang Deng, Xiang Duan, Hengbin Zheng, Zhiwei Liu, Jie Wu
{"title":"基于深度学习的螺栓松动角度定量分析","authors":"Yi Qian, Chuyue Huang, Beilin Han, Fan Cheng, Shengqiang Qiu, Hongyang Deng, Xiang Duan, Hengbin Zheng, Zhiwei Liu, Jie Wu","doi":"10.3390/buildings14010163","DOIUrl":null,"url":null,"abstract":"Bolted connections have become the most widely used connection method in steel structures. Over the long-term service of the bolts, loosening damage and other defects will inevitably occur due to various factors. To ensure the stability of bolted connections, an efficient and precise method for identifying loosened bolts in a given structure is proposed based on computer vision technology. The main idea of this method is to combine deep learning with image processing techniques to recognize and label the loosening angle from bolt connection images. A rectangular steel plate was taken as the test research object, and three grade 4.8 ordinary bolts were selected for study. The analysis was conducted under two conditions: manual loosening and simulated loosening. The results showed that the method proposed in this article could accurately locate the position of the bolts and identify the loosening angle, with an error value of about ±0.1°, which proves the accuracy and feasibility of this method, meeting the needs of structural health monitoring.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Analysis of Bolt Loosening Angle Based on Deep Learning\",\"authors\":\"Yi Qian, Chuyue Huang, Beilin Han, Fan Cheng, Shengqiang Qiu, Hongyang Deng, Xiang Duan, Hengbin Zheng, Zhiwei Liu, Jie Wu\",\"doi\":\"10.3390/buildings14010163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bolted connections have become the most widely used connection method in steel structures. Over the long-term service of the bolts, loosening damage and other defects will inevitably occur due to various factors. To ensure the stability of bolted connections, an efficient and precise method for identifying loosened bolts in a given structure is proposed based on computer vision technology. The main idea of this method is to combine deep learning with image processing techniques to recognize and label the loosening angle from bolt connection images. A rectangular steel plate was taken as the test research object, and three grade 4.8 ordinary bolts were selected for study. The analysis was conducted under two conditions: manual loosening and simulated loosening. The results showed that the method proposed in this article could accurately locate the position of the bolts and identify the loosening angle, with an error value of about ±0.1°, which proves the accuracy and feasibility of this method, meeting the needs of structural health monitoring.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":\"18 6\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14010163\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14010163","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Quantitative Analysis of Bolt Loosening Angle Based on Deep Learning
Bolted connections have become the most widely used connection method in steel structures. Over the long-term service of the bolts, loosening damage and other defects will inevitably occur due to various factors. To ensure the stability of bolted connections, an efficient and precise method for identifying loosened bolts in a given structure is proposed based on computer vision technology. The main idea of this method is to combine deep learning with image processing techniques to recognize and label the loosening angle from bolt connection images. A rectangular steel plate was taken as the test research object, and three grade 4.8 ordinary bolts were selected for study. The analysis was conducted under two conditions: manual loosening and simulated loosening. The results showed that the method proposed in this article could accurately locate the position of the bolts and identify the loosening angle, with an error value of about ±0.1°, which proves the accuracy and feasibility of this method, meeting the needs of structural health monitoring.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates