异方差下的小地区贫困估计

IF 1.6 4区 数学 Q2 SOCIAL SCIENCES, MATHEMATICAL METHODS
Sumonkanti Das, Ray Chambers
{"title":"异方差下的小地区贫困估计","authors":"Sumonkanti Das, Ray Chambers","doi":"10.1093/jssam/smad045","DOIUrl":null,"url":null,"abstract":"\n Multilevel models with nested errors are widely used in poverty estimation. An important application in this context is estimating the distribution of poverty as defined by the distribution of income within a set of domains that cover the population of interest. Since unit-level values of income are usually heteroskedastic, the standard homoskedasticity assumptions implicit in popular multilevel models may not be appropriate and can lead to bias, particularly when used to estimate domain-specific income distributions. This article addresses this problem when the income values in the population of interest can be characterized by a two-level mixed linear model with independent and identically distributed domain effects and with independent but not identically distributed individual effects. Estimation of poverty indicators that are functionals of domain-level income distributions is also addressed, and a nonparametric bootstrap procedure is used to estimate mean squared errors and confidence intervals. The proposed methodology is compared with the well-known World Bank poverty mapping methodology for this situation, using model-based simulation experiments as well as an empirical study based on Bangladesh poverty data.","PeriodicalId":17146,"journal":{"name":"Journal of Survey Statistics and Methodology","volume":"50 9","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small Area Poverty Estimation under Heteroskedasticity\",\"authors\":\"Sumonkanti Das, Ray Chambers\",\"doi\":\"10.1093/jssam/smad045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Multilevel models with nested errors are widely used in poverty estimation. An important application in this context is estimating the distribution of poverty as defined by the distribution of income within a set of domains that cover the population of interest. Since unit-level values of income are usually heteroskedastic, the standard homoskedasticity assumptions implicit in popular multilevel models may not be appropriate and can lead to bias, particularly when used to estimate domain-specific income distributions. This article addresses this problem when the income values in the population of interest can be characterized by a two-level mixed linear model with independent and identically distributed domain effects and with independent but not identically distributed individual effects. Estimation of poverty indicators that are functionals of domain-level income distributions is also addressed, and a nonparametric bootstrap procedure is used to estimate mean squared errors and confidence intervals. The proposed methodology is compared with the well-known World Bank poverty mapping methodology for this situation, using model-based simulation experiments as well as an empirical study based on Bangladesh poverty data.\",\"PeriodicalId\":17146,\"journal\":{\"name\":\"Journal of Survey Statistics and Methodology\",\"volume\":\"50 9\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Survey Statistics and Methodology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jssam/smad045\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Survey Statistics and Methodology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jssam/smad045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

摘要

具有嵌套误差的多层次模型被广泛应用于贫困估算。在这种情况下,一个重要的应用就是估算贫困的分布情况,而贫困的分布情况是由覆盖相关人口的一系列领域内的收入分布情况来定义的。由于单位水平的收入值通常是异方差的,因此流行的多层次模型中隐含的标准同方差假设可能并不合适,并可能导致偏差,尤其是在用于估计特定领域的收入分布时。当相关人群的收入值可以用具有独立且同分布的领域效应和具有独立但非同分布的个体效应的两级混合线性模型来描述时,本文就可以解决这个问题。文章还讨论了作为领域级收入分布函数的贫困指标的估算问题,并使用了非参数自举程序来估算均方误差和置信区间。利用基于模型的模拟实验以及基于孟加拉国贫困数据的实证研究,将所提出的方法与著名的世界银行贫困绘图方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small Area Poverty Estimation under Heteroskedasticity
Multilevel models with nested errors are widely used in poverty estimation. An important application in this context is estimating the distribution of poverty as defined by the distribution of income within a set of domains that cover the population of interest. Since unit-level values of income are usually heteroskedastic, the standard homoskedasticity assumptions implicit in popular multilevel models may not be appropriate and can lead to bias, particularly when used to estimate domain-specific income distributions. This article addresses this problem when the income values in the population of interest can be characterized by a two-level mixed linear model with independent and identically distributed domain effects and with independent but not identically distributed individual effects. Estimation of poverty indicators that are functionals of domain-level income distributions is also addressed, and a nonparametric bootstrap procedure is used to estimate mean squared errors and confidence intervals. The proposed methodology is compared with the well-known World Bank poverty mapping methodology for this situation, using model-based simulation experiments as well as an empirical study based on Bangladesh poverty data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
9.50%
发文量
40
期刊介绍: The Journal of Survey Statistics and Methodology, sponsored by AAPOR and the American Statistical Association, began publishing in 2013. Its objective is to publish cutting edge scholarly articles on statistical and methodological issues for sample surveys, censuses, administrative record systems, and other related data. It aims to be the flagship journal for research on survey statistics and methodology. Topics of interest include survey sample design, statistical inference, nonresponse, measurement error, the effects of modes of data collection, paradata and responsive survey design, combining data from multiple sources, record linkage, disclosure limitation, and other issues in survey statistics and methodology. The journal publishes both theoretical and applied papers, provided the theory is motivated by an important applied problem and the applied papers report on research that contributes generalizable knowledge to the field. Review papers are also welcomed. Papers on a broad range of surveys are encouraged, including (but not limited to) surveys concerning business, economics, marketing research, social science, environment, epidemiology, biostatistics and official statistics. The journal has three sections. The Survey Statistics section presents papers on innovative sampling procedures, imputation, weighting, measures of uncertainty, small area inference, new methods of analysis, and other statistical issues related to surveys. The Survey Methodology section presents papers that focus on methodological research, including methodological experiments, methods of data collection and use of paradata. The Applications section contains papers involving innovative applications of methods and providing practical contributions and guidance, and/or significant new findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信