层状软土剖面中混凝土桩群的地震破坏机理

IF 3.1 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Emin Hökelekli, A. Bayraktar, Fethi Şermet
{"title":"层状软土剖面中混凝土桩群的地震破坏机理","authors":"Emin Hökelekli, A. Bayraktar, Fethi Şermet","doi":"10.3390/buildings14010177","DOIUrl":null,"url":null,"abstract":"So far, little attention has been paid to the investigation on the seismic failure mechanisms of flexible concrete pile groups embedded in the layered soft soil profiles considering the material non-linearities of soil and concrete piles. The purpose of this study is to investigate seismic failure mechanism models of flexible concrete piles with varied groups in silt layered loose sand profiles under horizontal strong ground motions. Three-dimensional finite element models of the pile–soil interaction systems, which include nonlinearities of soil and concrete piles as well as coupling interactions between the piles and soil, were created for Models I, II, and III of the soil domains, encompassing 1x1, 2x2, and 3x3 flexible pile groups with diameters of 0.80 m and 1.0 m. Model I consists of a homogenous sand layer and a bedrock, Models II and III are composed of a five-layered domain with homogeneous sand and silt soil layers of different thicknesses. The linear elastic perfectly plastic constitutive model with a Mohr–Coulomb failure criterion is considered to represent the behavior of the soil layers, and the Concrete Damage Plasticity (CDP) model is used for the nonlinear behavior of the concrete piles. The interactions between the soil and the pile surfaces are modeled by defining tangential and normal contact behaviors. The models were analyzed for the scaled acceleration records of the 1999 Düzce and Kocaeli earthquakes, considering peak ground accelerations of 0.25 g, 0.50 g, and 0.75 g. The numerical results indicated that failure mechanisms of flexible concrete groups occur near the silt layers, and the silt layers have led to a significant increase in the spread area of the damaged zone and the number of damaged elements.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":"64 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic Failure Mechanisms of Concrete Pile Groups in Layered Soft Soil Profiles\",\"authors\":\"Emin Hökelekli, A. Bayraktar, Fethi Şermet\",\"doi\":\"10.3390/buildings14010177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"So far, little attention has been paid to the investigation on the seismic failure mechanisms of flexible concrete pile groups embedded in the layered soft soil profiles considering the material non-linearities of soil and concrete piles. The purpose of this study is to investigate seismic failure mechanism models of flexible concrete piles with varied groups in silt layered loose sand profiles under horizontal strong ground motions. Three-dimensional finite element models of the pile–soil interaction systems, which include nonlinearities of soil and concrete piles as well as coupling interactions between the piles and soil, were created for Models I, II, and III of the soil domains, encompassing 1x1, 2x2, and 3x3 flexible pile groups with diameters of 0.80 m and 1.0 m. Model I consists of a homogenous sand layer and a bedrock, Models II and III are composed of a five-layered domain with homogeneous sand and silt soil layers of different thicknesses. The linear elastic perfectly plastic constitutive model with a Mohr–Coulomb failure criterion is considered to represent the behavior of the soil layers, and the Concrete Damage Plasticity (CDP) model is used for the nonlinear behavior of the concrete piles. The interactions between the soil and the pile surfaces are modeled by defining tangential and normal contact behaviors. The models were analyzed for the scaled acceleration records of the 1999 Düzce and Kocaeli earthquakes, considering peak ground accelerations of 0.25 g, 0.50 g, and 0.75 g. The numerical results indicated that failure mechanisms of flexible concrete groups occur near the silt layers, and the silt layers have led to a significant increase in the spread area of the damaged zone and the number of damaged elements.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14010177\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14010177","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

迄今为止,考虑到土和混凝土桩的材料非线性,很少有人关注嵌入层状软土剖面中的柔性混凝土桩群的地震破坏机理研究。本研究的目的是研究在水平强地面运动下,淤泥层松散砂土剖面中不同桩群的柔性混凝土桩的地震破坏机理模型。模型 I 由均质砂层和基岩组成,模型 II 和 III 由不同厚度的均质砂和粉砂土层组成。土层的行为采用具有莫尔-库仑破坏准则的线性弹性完全塑性构造模型,混凝土桩的非线性行为采用混凝土破坏塑性(CDP)模型。通过定义切向和法向接触行为来模拟土层与桩表面之间的相互作用。数值结果表明,柔性混凝土群的破坏机制发生在淤泥层附近,淤泥层导致破坏区域的扩散面积和破坏元素的数量显著增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seismic Failure Mechanisms of Concrete Pile Groups in Layered Soft Soil Profiles
So far, little attention has been paid to the investigation on the seismic failure mechanisms of flexible concrete pile groups embedded in the layered soft soil profiles considering the material non-linearities of soil and concrete piles. The purpose of this study is to investigate seismic failure mechanism models of flexible concrete piles with varied groups in silt layered loose sand profiles under horizontal strong ground motions. Three-dimensional finite element models of the pile–soil interaction systems, which include nonlinearities of soil and concrete piles as well as coupling interactions between the piles and soil, were created for Models I, II, and III of the soil domains, encompassing 1x1, 2x2, and 3x3 flexible pile groups with diameters of 0.80 m and 1.0 m. Model I consists of a homogenous sand layer and a bedrock, Models II and III are composed of a five-layered domain with homogeneous sand and silt soil layers of different thicknesses. The linear elastic perfectly plastic constitutive model with a Mohr–Coulomb failure criterion is considered to represent the behavior of the soil layers, and the Concrete Damage Plasticity (CDP) model is used for the nonlinear behavior of the concrete piles. The interactions between the soil and the pile surfaces are modeled by defining tangential and normal contact behaviors. The models were analyzed for the scaled acceleration records of the 1999 Düzce and Kocaeli earthquakes, considering peak ground accelerations of 0.25 g, 0.50 g, and 0.75 g. The numerical results indicated that failure mechanisms of flexible concrete groups occur near the silt layers, and the silt layers have led to a significant increase in the spread area of the damaged zone and the number of damaged elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Buildings
Buildings Multiple-
CiteScore
3.40
自引率
26.30%
发文量
1883
审稿时长
11 weeks
期刊介绍: BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信