洛伦兹五维二阶零势列上的γ-里奇双形向量场

IF 0.7 4区 数学 Q2 MATHEMATICS
S. Azami, U.c. De
{"title":"洛伦兹五维二阶零势列上的γ-里奇双形向量场","authors":"S. Azami, U.c. De","doi":"10.15672/hujms.1294973","DOIUrl":null,"url":null,"abstract":"In this paper, we completely classify Ricci bi-conformal vector fields on connected, simply-connected five-dimensional two-step nilpotent Lie groups and we show which of them are the Killing vector fields and gradient vector fields.","PeriodicalId":55078,"journal":{"name":"Hacettepe Journal of Mathematics and Statistics","volume":"88 15","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ًRicci bi-conformal vector fields on Lorentzian five dimensional two-step nilpotent Lie groups\",\"authors\":\"S. Azami, U.c. De\",\"doi\":\"10.15672/hujms.1294973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we completely classify Ricci bi-conformal vector fields on connected, simply-connected five-dimensional two-step nilpotent Lie groups and we show which of them are the Killing vector fields and gradient vector fields.\",\"PeriodicalId\":55078,\"journal\":{\"name\":\"Hacettepe Journal of Mathematics and Statistics\",\"volume\":\"88 15\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hacettepe Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15672/hujms.1294973\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1294973","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们对连通的、简单连通的五维两阶零势李群上的里奇双形向量场进行了完整的分类,并说明了其中哪些是基林向量场和梯度向量场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ًRicci bi-conformal vector fields on Lorentzian five dimensional two-step nilpotent Lie groups
In this paper, we completely classify Ricci bi-conformal vector fields on connected, simply-connected five-dimensional two-step nilpotent Lie groups and we show which of them are the Killing vector fields and gradient vector fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Hacettepe Journal of Mathematics and Statistics covers all aspects of Mathematics and Statistics. Papers on the interface between Mathematics and Statistics are particularly welcome, including applications to Physics, Actuarial Sciences, Finance and Economics. We strongly encourage submissions for Statistics Section including current and important real world examples across a wide range of disciplines. Papers have innovations of statistical methodology are highly welcome. Purely theoretical papers may be considered only if they include popular real world applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信