具有分布式偏差参数的一阶中性微分方程正周期解的存在性结果

IF 0.7 4区 数学 Q2 MATHEMATICS
T. Candan
{"title":"具有分布式偏差参数的一阶中性微分方程正周期解的存在性结果","authors":"T. Candan","doi":"10.15672/hujms.1282490","DOIUrl":null,"url":null,"abstract":"We take into account the first order nonlinear neutral differential equation with distributed deviating arguments. \n Using Krasnoselskii's fixed point theorem, we give some new criteria for the existence of positive periodic solutions to this equation. The theorems we have established are illustrated by an example.","PeriodicalId":55078,"journal":{"name":"Hacettepe Journal of Mathematics and Statistics","volume":"5 11","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence results for positive periodic solutions to first order neutral differential equations with distributed deviating arguments\",\"authors\":\"T. Candan\",\"doi\":\"10.15672/hujms.1282490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We take into account the first order nonlinear neutral differential equation with distributed deviating arguments. \\n Using Krasnoselskii's fixed point theorem, we give some new criteria for the existence of positive periodic solutions to this equation. The theorems we have established are illustrated by an example.\",\"PeriodicalId\":55078,\"journal\":{\"name\":\"Hacettepe Journal of Mathematics and Statistics\",\"volume\":\"5 11\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hacettepe Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15672/hujms.1282490\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1282490","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了具有分布式偏差参数的一阶非线性中性微分方程。 利用 Krasnoselskii 定点定理,我们给出了该方程存在正周期解的一些新标准。我们通过一个例子来说明我们建立的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence results for positive periodic solutions to first order neutral differential equations with distributed deviating arguments
We take into account the first order nonlinear neutral differential equation with distributed deviating arguments. Using Krasnoselskii's fixed point theorem, we give some new criteria for the existence of positive periodic solutions to this equation. The theorems we have established are illustrated by an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Hacettepe Journal of Mathematics and Statistics covers all aspects of Mathematics and Statistics. Papers on the interface between Mathematics and Statistics are particularly welcome, including applications to Physics, Actuarial Sciences, Finance and Economics. We strongly encourage submissions for Statistics Section including current and important real world examples across a wide range of disciplines. Papers have innovations of statistical methodology are highly welcome. Purely theoretical papers may be considered only if they include popular real world applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信