在 Ansys-Fluent 中利用锐化界面 Vof 和局部自适应网格细化进行核沸腾的三维模拟

Winston James, I. Perez-Raya
{"title":"在 Ansys-Fluent 中利用锐化界面 Vof 和局部自适应网格细化进行核沸腾的三维模拟","authors":"Winston James, I. Perez-Raya","doi":"10.1115/1.4064459","DOIUrl":null,"url":null,"abstract":"\n The present work demonstrates the use of customized Ansys-Fluent in performing 3D numerical simulations of nucleate boiling with a sharp interface and adaptive mesh refinement. The developed simulation approach is a reliable and effective tool to investigate 3D boiling phenomena by accurately capturing the thermal and fluid dynamic interfacial vapor-liquid interaction and reducing computational time. These methods account for 3D sharp interface and thermal conditions of saturation temperature refining the mesh around the bubble edge. User-Defined-Functions (UDFs) were developed to customize the software Ansys-Fluent to preserve the interface sharpness, maintain saturation temperature conditions, and perform effective adaptive mesh refinement in a localized region around the interface. Adaptive mesh refinement is accomplished by a UDF that identifies the cells near the contact line and the liquid-vapor interface and applies the adaptive mesh refinement algorithms only at the identified cells. Validating the approach considered spherical bubble growth with an observed acceptable difference between theoretical and simulation bubble growth rates of 10%. Bubble growth simulations with water reveal an influence region of 2.7 times the departure bubble diameter, and average heat transfer coefficient of 15000 W/m2-K. In addition, the results indicate a reduced computational time of 75 hours using adaptive mesh compared to uniform mesh.","PeriodicalId":505153,"journal":{"name":"ASME Journal of Heat and Mass Transfer","volume":"4 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Simulations of Nucleate Boiling with Sharp Interface Vof and Localized Adaptive Mesh Refinement in Ansys-Fluent\",\"authors\":\"Winston James, I. Perez-Raya\",\"doi\":\"10.1115/1.4064459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The present work demonstrates the use of customized Ansys-Fluent in performing 3D numerical simulations of nucleate boiling with a sharp interface and adaptive mesh refinement. The developed simulation approach is a reliable and effective tool to investigate 3D boiling phenomena by accurately capturing the thermal and fluid dynamic interfacial vapor-liquid interaction and reducing computational time. These methods account for 3D sharp interface and thermal conditions of saturation temperature refining the mesh around the bubble edge. User-Defined-Functions (UDFs) were developed to customize the software Ansys-Fluent to preserve the interface sharpness, maintain saturation temperature conditions, and perform effective adaptive mesh refinement in a localized region around the interface. Adaptive mesh refinement is accomplished by a UDF that identifies the cells near the contact line and the liquid-vapor interface and applies the adaptive mesh refinement algorithms only at the identified cells. Validating the approach considered spherical bubble growth with an observed acceptable difference between theoretical and simulation bubble growth rates of 10%. Bubble growth simulations with water reveal an influence region of 2.7 times the departure bubble diameter, and average heat transfer coefficient of 15000 W/m2-K. In addition, the results indicate a reduced computational time of 75 hours using adaptive mesh compared to uniform mesh.\",\"PeriodicalId\":505153,\"journal\":{\"name\":\"ASME Journal of Heat and Mass Transfer\",\"volume\":\"4 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Journal of Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究展示了如何使用定制的 Ansys-Fluent 对具有锐利界面和自适应网格细化的成核沸腾进行三维数值模拟。所开发的模拟方法准确捕捉了热和流体动力学界面汽液相互作用,并缩短了计算时间,是研究三维沸腾现象的可靠而有效的工具。这些方法考虑了三维尖锐界面和饱和温度的热条件,对气泡边缘周围的网格进行了细化。开发了用户自定义函数(UDF)来定制软件 Ansys-Fluent,以保持界面锐利度、维持饱和温度条件,并在界面周围的局部区域执行有效的自适应网格细化。自适应网格细化由 UDF 完成,该 UDF 可识别接触线和液气界面附近的单元格,并仅在识别的单元格中应用自适应网格细化算法。验证该方法时考虑了球形气泡的生长,观察到理论气泡生长率和模拟气泡生长率之间的可接受差异为 10%。对水的气泡生长模拟显示,影响区域为出发气泡直径的 2.7 倍,平均传热系数为 15000 W/m2-K。此外,结果表明,与均匀网格相比,使用自适应网格可减少 75 小时的计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D Simulations of Nucleate Boiling with Sharp Interface Vof and Localized Adaptive Mesh Refinement in Ansys-Fluent
The present work demonstrates the use of customized Ansys-Fluent in performing 3D numerical simulations of nucleate boiling with a sharp interface and adaptive mesh refinement. The developed simulation approach is a reliable and effective tool to investigate 3D boiling phenomena by accurately capturing the thermal and fluid dynamic interfacial vapor-liquid interaction and reducing computational time. These methods account for 3D sharp interface and thermal conditions of saturation temperature refining the mesh around the bubble edge. User-Defined-Functions (UDFs) were developed to customize the software Ansys-Fluent to preserve the interface sharpness, maintain saturation temperature conditions, and perform effective adaptive mesh refinement in a localized region around the interface. Adaptive mesh refinement is accomplished by a UDF that identifies the cells near the contact line and the liquid-vapor interface and applies the adaptive mesh refinement algorithms only at the identified cells. Validating the approach considered spherical bubble growth with an observed acceptable difference between theoretical and simulation bubble growth rates of 10%. Bubble growth simulations with water reveal an influence region of 2.7 times the departure bubble diameter, and average heat transfer coefficient of 15000 W/m2-K. In addition, the results indicate a reduced computational time of 75 hours using adaptive mesh compared to uniform mesh.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信