论有限群的 $\sigma$-$c$-subnormal 子群

IF 0.7 4区 数学 Q2 MATHEMATICS
Jiahui Li̇u, Sh. Qiao
{"title":"论有限群的 $\\sigma$-$c$-subnormal 子群","authors":"Jiahui Li̇u, Sh. Qiao","doi":"10.15672/hujms.1342339","DOIUrl":null,"url":null,"abstract":"Let $ \\sigma=\\{\\sigma_i:i\\in I\\} $ be a partition of the set $ \\mathbb{P} $ of all primes. A finite group $ G $ is called $ \\sigma $-primary if the prime divisors, if any, of $|G|$ all belong to the same member of $ \\sigma $. A finite group $ G $ is called $ \\sigma $-soluble if every chief factor of $ G $ is $ \\sigma$-primary. A subgroup $H$ of a group $G$ is called $\\sigma$-subnormal in $G$ if there is a chain of subgroups $H=H_0\\leq H_1\\leq\\cdots\\leq H_n=G$ such that either $ H_{i-1} $ is normal in $ H_i $ or $ H_{i}/(H_{i-1})_{H_{i}} $ is $ \\sigma $-primary for all $ i=1,\\dots,n $; A subgroup $H$ of a group $G$ is called $\\sigma$-$c$-subnormal in $G$ if there is a subnormal subgroup $T$ of $G$ such that $G=HT$ and $H\\cap T\\leq H_{\\sigma G}$, where the subgroup $H_{\\sigma G}$ is generated by all $\\sigma$-subnormal subgroups of $G$ contained in $H$. In this paper, we investigate the influence of $\\sigma$-$c$-subnormality of some kinds of maximal \nsubgroups on $\\sigma$-solubility of finite groups, which generalize some known results.","PeriodicalId":55078,"journal":{"name":"Hacettepe Journal of Mathematics and Statistics","volume":"11 6","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On $\\\\sigma$-$c$-subnormal subgroups of finite groups\",\"authors\":\"Jiahui Li̇u, Sh. Qiao\",\"doi\":\"10.15672/hujms.1342339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $ \\\\sigma=\\\\{\\\\sigma_i:i\\\\in I\\\\} $ be a partition of the set $ \\\\mathbb{P} $ of all primes. A finite group $ G $ is called $ \\\\sigma $-primary if the prime divisors, if any, of $|G|$ all belong to the same member of $ \\\\sigma $. A finite group $ G $ is called $ \\\\sigma $-soluble if every chief factor of $ G $ is $ \\\\sigma$-primary. A subgroup $H$ of a group $G$ is called $\\\\sigma$-subnormal in $G$ if there is a chain of subgroups $H=H_0\\\\leq H_1\\\\leq\\\\cdots\\\\leq H_n=G$ such that either $ H_{i-1} $ is normal in $ H_i $ or $ H_{i}/(H_{i-1})_{H_{i}} $ is $ \\\\sigma $-primary for all $ i=1,\\\\dots,n $; A subgroup $H$ of a group $G$ is called $\\\\sigma$-$c$-subnormal in $G$ if there is a subnormal subgroup $T$ of $G$ such that $G=HT$ and $H\\\\cap T\\\\leq H_{\\\\sigma G}$, where the subgroup $H_{\\\\sigma G}$ is generated by all $\\\\sigma$-subnormal subgroups of $G$ contained in $H$. In this paper, we investigate the influence of $\\\\sigma$-$c$-subnormality of some kinds of maximal \\nsubgroups on $\\\\sigma$-solubility of finite groups, which generalize some known results.\",\"PeriodicalId\":55078,\"journal\":{\"name\":\"Hacettepe Journal of Mathematics and Statistics\",\"volume\":\"11 6\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hacettepe Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15672/hujms.1342339\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1342339","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 $\sigma=\{sigma_i:i\in I\} $ 是所有素集 $\mathbb{P} $ 的一个分区。如果 $|G|$ 的素除数(如果有的话)都属于 $ \sigma $ 的同一个成员,那么一个有限群 $ G $ 称为 $ \sigma $ 主群.如果 $ G $ 的每个主因数都是\sigma$-主因数,那么有限群 $ G $ 称为 $ \sigma $-可溶群.如果存在一连串的子群 $H=H_0\leq H_1\leq\cdots\leq H_n=G$,使得 $H_{i-1} $ 在 $H_i $ 中是正常的,或者 $H_{i}/(H_{i-1})_{H_{i}} $ 在 $H_i $ 中是正常的,那么一个有限群 $G$ 的子群 $H$ 在 $G$ 中叫做 $\sigma$-subnormal 。$ 是所有 $ i=1,\dots,n $ 的 $ \sigma $ 主群;如果 $G$ 有一个子正常子群 $T$,使得 $G=HT$ 和 $H\cap T\leq H_\{sigma G}$,其中子群 $H_{\sigma G}$ 是由 $H$ 中包含的 $G$ 的所有 $\sigma$ 子正常子群产生的,那么这个子群 $H$ 在 $G$ 中称为 $\sigma$-$c$ 子正常群。在本文中,我们研究了某些类型的最大子群的 $\sigma$-$c$ 次正态性对有限群的 $\sigma$ 可溶性的影响,从而推广了一些已知的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On $\sigma$-$c$-subnormal subgroups of finite groups
Let $ \sigma=\{\sigma_i:i\in I\} $ be a partition of the set $ \mathbb{P} $ of all primes. A finite group $ G $ is called $ \sigma $-primary if the prime divisors, if any, of $|G|$ all belong to the same member of $ \sigma $. A finite group $ G $ is called $ \sigma $-soluble if every chief factor of $ G $ is $ \sigma$-primary. A subgroup $H$ of a group $G$ is called $\sigma$-subnormal in $G$ if there is a chain of subgroups $H=H_0\leq H_1\leq\cdots\leq H_n=G$ such that either $ H_{i-1} $ is normal in $ H_i $ or $ H_{i}/(H_{i-1})_{H_{i}} $ is $ \sigma $-primary for all $ i=1,\dots,n $; A subgroup $H$ of a group $G$ is called $\sigma$-$c$-subnormal in $G$ if there is a subnormal subgroup $T$ of $G$ such that $G=HT$ and $H\cap T\leq H_{\sigma G}$, where the subgroup $H_{\sigma G}$ is generated by all $\sigma$-subnormal subgroups of $G$ contained in $H$. In this paper, we investigate the influence of $\sigma$-$c$-subnormality of some kinds of maximal subgroups on $\sigma$-solubility of finite groups, which generalize some known results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Hacettepe Journal of Mathematics and Statistics covers all aspects of Mathematics and Statistics. Papers on the interface between Mathematics and Statistics are particularly welcome, including applications to Physics, Actuarial Sciences, Finance and Economics. We strongly encourage submissions for Statistics Section including current and important real world examples across a wide range of disciplines. Papers have innovations of statistical methodology are highly welcome. Purely theoretical papers may be considered only if they include popular real world applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信