角-索博列夫空间上具有非线性边界条件的机械粘弹性系统的有限时间特性

IF 0.7 4区 数学 Q2 MATHEMATICS
Morteza Koozehgar Kalleji
{"title":"角-索博列夫空间上具有非线性边界条件的机械粘弹性系统的有限时间特性","authors":"Morteza Koozehgar Kalleji","doi":"10.15672/hujms.1286267","DOIUrl":null,"url":null,"abstract":"In this article, we deal with the initial boundary value problem for \na viscoelastic system related to the quasilinear parabolic equation \nwith nonlinear boundary source term on a manifold $\\mathbb{M}$ with \ncorner singularities. We prove that, under certain conditions on \nrelaxation function $g$, any solution $u$ in the corner-Sobolev \nspace \n$\\mathcal{H}^{1,(\\frac{N-1}{2},\\frac{N}{2})}_{\\partial^{0}\\mathbb{M}}(\\mathbb{M})$ \nblows up in finite time. The estimates of the life-span of solutions \nare also given.","PeriodicalId":55078,"journal":{"name":"Hacettepe Journal of Mathematics and Statistics","volume":"6 4","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite-time property of a mechanical viscoelastic system with nonlinear boundary conditions on corner-Sobolev spaces\",\"authors\":\"Morteza Koozehgar Kalleji\",\"doi\":\"10.15672/hujms.1286267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we deal with the initial boundary value problem for \\na viscoelastic system related to the quasilinear parabolic equation \\nwith nonlinear boundary source term on a manifold $\\\\mathbb{M}$ with \\ncorner singularities. We prove that, under certain conditions on \\nrelaxation function $g$, any solution $u$ in the corner-Sobolev \\nspace \\n$\\\\mathcal{H}^{1,(\\\\frac{N-1}{2},\\\\frac{N}{2})}_{\\\\partial^{0}\\\\mathbb{M}}(\\\\mathbb{M})$ \\nblows up in finite time. The estimates of the life-span of solutions \\nare also given.\",\"PeriodicalId\":55078,\"journal\":{\"name\":\"Hacettepe Journal of Mathematics and Statistics\",\"volume\":\"6 4\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hacettepe Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15672/hujms.1286267\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1286267","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们讨论了在具有角奇点的流形 $\mathbb{M}$ 上与带有非线性边界源项的准线性抛物方程相关的粘弹性系统的初始边界值问题。我们证明,在松弛函数 $g$ 的某些条件下,角-Sobolev 空间 $\mathcal{H}^{1,(\frac{N-1}{2},\frac{N}{2})}_{\partial^{0}\mathbb{M}}(\mathbb{M})$ 中的任何解 $u$ 都会在有限时间内炸毁。同时给出了解的寿命估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite-time property of a mechanical viscoelastic system with nonlinear boundary conditions on corner-Sobolev spaces
In this article, we deal with the initial boundary value problem for a viscoelastic system related to the quasilinear parabolic equation with nonlinear boundary source term on a manifold $\mathbb{M}$ with corner singularities. We prove that, under certain conditions on relaxation function $g$, any solution $u$ in the corner-Sobolev space $\mathcal{H}^{1,(\frac{N-1}{2},\frac{N}{2})}_{\partial^{0}\mathbb{M}}(\mathbb{M})$ blows up in finite time. The estimates of the life-span of solutions are also given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Hacettepe Journal of Mathematics and Statistics covers all aspects of Mathematics and Statistics. Papers on the interface between Mathematics and Statistics are particularly welcome, including applications to Physics, Actuarial Sciences, Finance and Economics. We strongly encourage submissions for Statistics Section including current and important real world examples across a wide range of disciplines. Papers have innovations of statistical methodology are highly welcome. Purely theoretical papers may be considered only if they include popular real world applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信