综述:用于神经刺激的柔性设备

Soft science Pub Date : 2024-01-10 DOI:10.20517/ss.2023.36
Ze-Qing Liu, Xiang-Yang Yu, Jing Huang, Xin-Yi Wu, Zi-Yu Wang, Ben-Peng Zhu
{"title":"综述:用于神经刺激的柔性设备","authors":"Ze-Qing Liu, Xiang-Yang Yu, Jing Huang, Xin-Yi Wu, Zi-Yu Wang, Ben-Peng Zhu","doi":"10.20517/ss.2023.36","DOIUrl":null,"url":null,"abstract":"Nerve stimulation technology utilizing electricity, magnetism, light, and ultrasound has found extensive applications in biotechnology and medical fields. Neurostimulation devices serve as the crucial interface between biological tissue and the external environment, posing a bottleneck in the advancement of neurostimulation technology. Ensuring safety and stability is essential for their future applications. Traditional rigid devices often elicit significant immune responses due to the mechanical mismatch between their materials and biological tissues. Consequently, there is a growing demand for flexible nerve stimulation devices that offer enhanced treatment efficacy while minimizing irritation to the human body. This review provides a comprehensive summary of the historical development and recent advancements in flexible devices utilizing four neurostimulation techniques: electrical stimulation, magnetic stimulation, optic stimulation, and ultrasonic stimulation. It highlights their potential for high biocompatibility, low power consumption, wireless operation, and superior stability. The aim is to offer valuable insights and guidance for the future development and application of flexible neurostimulation devices.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"2 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review: flexible devices for nerve stimulation\",\"authors\":\"Ze-Qing Liu, Xiang-Yang Yu, Jing Huang, Xin-Yi Wu, Zi-Yu Wang, Ben-Peng Zhu\",\"doi\":\"10.20517/ss.2023.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nerve stimulation technology utilizing electricity, magnetism, light, and ultrasound has found extensive applications in biotechnology and medical fields. Neurostimulation devices serve as the crucial interface between biological tissue and the external environment, posing a bottleneck in the advancement of neurostimulation technology. Ensuring safety and stability is essential for their future applications. Traditional rigid devices often elicit significant immune responses due to the mechanical mismatch between their materials and biological tissues. Consequently, there is a growing demand for flexible nerve stimulation devices that offer enhanced treatment efficacy while minimizing irritation to the human body. This review provides a comprehensive summary of the historical development and recent advancements in flexible devices utilizing four neurostimulation techniques: electrical stimulation, magnetic stimulation, optic stimulation, and ultrasonic stimulation. It highlights their potential for high biocompatibility, low power consumption, wireless operation, and superior stability. The aim is to offer valuable insights and guidance for the future development and application of flexible neurostimulation devices.\",\"PeriodicalId\":74837,\"journal\":{\"name\":\"Soft science\",\"volume\":\"2 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/ss.2023.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ss.2023.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用电、磁、光和超声波的神经刺激技术已广泛应用于生物技术和医疗领域。神经刺激设备是生物组织与外部环境之间的重要接口,是神经刺激技术发展的瓶颈。确保安全性和稳定性对其未来的应用至关重要。传统的刚性装置由于其材料与生物组织之间的机械不匹配,往往会引起严重的免疫反应。因此,人们对柔性神经刺激设备的需求日益增长,这种设备既能提高治疗效果,又能最大限度地减少对人体的刺激。本综述全面总结了采用四种神经刺激技术(电刺激、磁刺激、光学刺激和超声波刺激)的柔性设备的历史发展和最新进展。它强调了这些设备在高生物相容性、低功耗、无线操作和卓越稳定性方面的潜力。目的是为柔性神经刺激设备的未来开发和应用提供有价值的见解和指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review: flexible devices for nerve stimulation
Nerve stimulation technology utilizing electricity, magnetism, light, and ultrasound has found extensive applications in biotechnology and medical fields. Neurostimulation devices serve as the crucial interface between biological tissue and the external environment, posing a bottleneck in the advancement of neurostimulation technology. Ensuring safety and stability is essential for their future applications. Traditional rigid devices often elicit significant immune responses due to the mechanical mismatch between their materials and biological tissues. Consequently, there is a growing demand for flexible nerve stimulation devices that offer enhanced treatment efficacy while minimizing irritation to the human body. This review provides a comprehensive summary of the historical development and recent advancements in flexible devices utilizing four neurostimulation techniques: electrical stimulation, magnetic stimulation, optic stimulation, and ultrasonic stimulation. It highlights their potential for high biocompatibility, low power consumption, wireless operation, and superior stability. The aim is to offer valuable insights and guidance for the future development and application of flexible neurostimulation devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信