{"title":"恐惧调节和消退会明显改变创伤后应激障碍幼年动物模型杏仁核内的双向突触可塑性","authors":"Kwanghoon Park, Hoyong Park, ChiHye Chung","doi":"10.1016/j.ynstr.2024.100606","DOIUrl":null,"url":null,"abstract":"<div><p>Synaptic plasticity in the amygdala plays an essential role in the formation and inhibition of fear memory; however, this plasticity has mainly been studied in the lateral amygdala, making it largely uninvestigated in other subnuclei. Here, we investigated long-term potentiation (LTP) and long-term depression (LTD) in the basolateral amygdala (BLA) to the medial division of the central amygdala (CEm) synapses of juvenile C57BL/6N (B6) and 129S1/SvImJ (S1) mice. We found that in naïve B6 and S1 mice, LTP was not induced at the BLA to CEm synapses, whereas fear conditioning lowered the threshold for LTP induction in these synapses of both B6 and S1 mice. Interestingly, fear extinction disrupted the induction of LTP at the BLA to CEm synapses of B6 mice, whereas LTP was left intact in S1 mice. Both low-frequency stimulation (LFS) and modest LFS (mLFS) induced LTD in naïve B6 and S1 mice, suggesting that the BLA to CEm synapses express bidirectional plasticity. Fear conditioning disrupted both types of LTD induction selectively in S1 mice and LFS-LTD, presumably NMDAR-dependent LTD was partially recovered by fear extinction. However, mLFS-LTD which has been known to be endocannabinoid receptor 1 (CB1R)-dependent was not induced after fear extinction in both mouse strains. Our observations suggest that fear conditioning enhances LTP while fear extinction diminishes LTP at the BLA to the CEm synapses of B6 mice with successful extinction. Considering that S1 mice showed strong fear conditioning and impaired extinction, strong fear conditioning in the S1 strain may be related to disrupted LTD, and impaired extinction may be due to constant LTP and weak LFS-LTD at the BLA to CEm synapses. Our study contributes to the further understanding of the dynamics of synaptic potentiation and depression between the subnuclei of the amygdala in juvenile mice after fear conditioning and extinction.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"29 ","pages":"Article 100606"},"PeriodicalIF":4.3000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235228952400002X/pdfft?md5=efc33c66b1b819d4579e8e5cb8495837&pid=1-s2.0-S235228952400002X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fear conditioning and extinction distinctively alter bidirectional synaptic plasticity within the amygdala of an animal model of post-traumatic stress disorder\",\"authors\":\"Kwanghoon Park, Hoyong Park, ChiHye Chung\",\"doi\":\"10.1016/j.ynstr.2024.100606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Synaptic plasticity in the amygdala plays an essential role in the formation and inhibition of fear memory; however, this plasticity has mainly been studied in the lateral amygdala, making it largely uninvestigated in other subnuclei. Here, we investigated long-term potentiation (LTP) and long-term depression (LTD) in the basolateral amygdala (BLA) to the medial division of the central amygdala (CEm) synapses of juvenile C57BL/6N (B6) and 129S1/SvImJ (S1) mice. We found that in naïve B6 and S1 mice, LTP was not induced at the BLA to CEm synapses, whereas fear conditioning lowered the threshold for LTP induction in these synapses of both B6 and S1 mice. Interestingly, fear extinction disrupted the induction of LTP at the BLA to CEm synapses of B6 mice, whereas LTP was left intact in S1 mice. Both low-frequency stimulation (LFS) and modest LFS (mLFS) induced LTD in naïve B6 and S1 mice, suggesting that the BLA to CEm synapses express bidirectional plasticity. Fear conditioning disrupted both types of LTD induction selectively in S1 mice and LFS-LTD, presumably NMDAR-dependent LTD was partially recovered by fear extinction. However, mLFS-LTD which has been known to be endocannabinoid receptor 1 (CB1R)-dependent was not induced after fear extinction in both mouse strains. Our observations suggest that fear conditioning enhances LTP while fear extinction diminishes LTP at the BLA to the CEm synapses of B6 mice with successful extinction. Considering that S1 mice showed strong fear conditioning and impaired extinction, strong fear conditioning in the S1 strain may be related to disrupted LTD, and impaired extinction may be due to constant LTP and weak LFS-LTD at the BLA to CEm synapses. Our study contributes to the further understanding of the dynamics of synaptic potentiation and depression between the subnuclei of the amygdala in juvenile mice after fear conditioning and extinction.</p></div>\",\"PeriodicalId\":19125,\"journal\":{\"name\":\"Neurobiology of Stress\",\"volume\":\"29 \",\"pages\":\"Article 100606\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S235228952400002X/pdfft?md5=efc33c66b1b819d4579e8e5cb8495837&pid=1-s2.0-S235228952400002X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Stress\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235228952400002X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Stress","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235228952400002X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Fear conditioning and extinction distinctively alter bidirectional synaptic plasticity within the amygdala of an animal model of post-traumatic stress disorder
Synaptic plasticity in the amygdala plays an essential role in the formation and inhibition of fear memory; however, this plasticity has mainly been studied in the lateral amygdala, making it largely uninvestigated in other subnuclei. Here, we investigated long-term potentiation (LTP) and long-term depression (LTD) in the basolateral amygdala (BLA) to the medial division of the central amygdala (CEm) synapses of juvenile C57BL/6N (B6) and 129S1/SvImJ (S1) mice. We found that in naïve B6 and S1 mice, LTP was not induced at the BLA to CEm synapses, whereas fear conditioning lowered the threshold for LTP induction in these synapses of both B6 and S1 mice. Interestingly, fear extinction disrupted the induction of LTP at the BLA to CEm synapses of B6 mice, whereas LTP was left intact in S1 mice. Both low-frequency stimulation (LFS) and modest LFS (mLFS) induced LTD in naïve B6 and S1 mice, suggesting that the BLA to CEm synapses express bidirectional plasticity. Fear conditioning disrupted both types of LTD induction selectively in S1 mice and LFS-LTD, presumably NMDAR-dependent LTD was partially recovered by fear extinction. However, mLFS-LTD which has been known to be endocannabinoid receptor 1 (CB1R)-dependent was not induced after fear extinction in both mouse strains. Our observations suggest that fear conditioning enhances LTP while fear extinction diminishes LTP at the BLA to the CEm synapses of B6 mice with successful extinction. Considering that S1 mice showed strong fear conditioning and impaired extinction, strong fear conditioning in the S1 strain may be related to disrupted LTD, and impaired extinction may be due to constant LTP and weak LFS-LTD at the BLA to CEm synapses. Our study contributes to the further understanding of the dynamics of synaptic potentiation and depression between the subnuclei of the amygdala in juvenile mice after fear conditioning and extinction.
期刊介绍:
Neurobiology of Stress is a multidisciplinary journal for the publication of original research and review articles on basic, translational and clinical research into stress and related disorders. It will focus on the impact of stress on the brain from cellular to behavioral functions and stress-related neuropsychiatric disorders (such as depression, trauma and anxiety). The translation of basic research findings into real-world applications will be a key aim of the journal.
Basic, translational and clinical research on the following topics as they relate to stress will be covered:
Molecular substrates and cell signaling,
Genetics and epigenetics,
Stress circuitry,
Structural and physiological plasticity,
Developmental Aspects,
Laboratory models of stress,
Neuroinflammation and pathology,
Memory and Cognition,
Motivational Processes,
Fear and Anxiety,
Stress-related neuropsychiatric disorders (including depression, PTSD, substance abuse),
Neuropsychopharmacology.