Keira Johnson, Kathi Jo Jankowski, Joanna Carey, Nicholas J. Lyon, William H. McDowell, Arial Shogren, Adam Wymore, Lienne Sethna, Wilfred M. Wollheim, Amanda E. Poste, Pirkko Kortelainen, Ruth Heindel, Hjalmar Laudon, Antti Räike, Jeremy B. Jones, Diane McKnight, Paul Julian, Sidney Bush, Pamela L. Sullivan
{"title":"建立北半球河川硅机制及其稳定性","authors":"Keira Johnson, Kathi Jo Jankowski, Joanna Carey, Nicholas J. Lyon, William H. McDowell, Arial Shogren, Adam Wymore, Lienne Sethna, Wilfred M. Wollheim, Amanda E. Poste, Pirkko Kortelainen, Ruth Heindel, Hjalmar Laudon, Antti Räike, Jeremy B. Jones, Diane McKnight, Paul Julian, Sidney Bush, Pamela L. Sullivan","doi":"10.1002/lol2.10372","DOIUrl":null,"url":null,"abstract":"<p>Fluvial silicon (Si) plays a critical role in controlling primary production, water quality, and carbon sequestration through supporting freshwater and marine diatom communities. Geological, biogeochemical, and hydrological processes, as well as climate and land use, dictate the amount of Si exported by streams. Understanding Si regimes—the seasonal patterns of Si concentrations—can help identify processes driving Si export. We analyzed Si concentrations from over 200 stream sites across the Northern Hemisphere to establish distinct Si regimes and evaluated how often sites moved among regimes over their period of record. We observed five distinct regimes across diverse stream sites, with nearly 60% of sites exhibiting multiple regime types over time. Our results indicate greater spatial and interannual variability in Si seasonality than previously recognized and highlight the need to characterize the watershed and climate variables that affect Si cycling across diverse ecosystems.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10372","citationCount":"0","resultStr":"{\"title\":\"Establishing fluvial silicon regimes and their stability across the Northern Hemisphere\",\"authors\":\"Keira Johnson, Kathi Jo Jankowski, Joanna Carey, Nicholas J. Lyon, William H. McDowell, Arial Shogren, Adam Wymore, Lienne Sethna, Wilfred M. Wollheim, Amanda E. Poste, Pirkko Kortelainen, Ruth Heindel, Hjalmar Laudon, Antti Räike, Jeremy B. Jones, Diane McKnight, Paul Julian, Sidney Bush, Pamela L. Sullivan\",\"doi\":\"10.1002/lol2.10372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fluvial silicon (Si) plays a critical role in controlling primary production, water quality, and carbon sequestration through supporting freshwater and marine diatom communities. Geological, biogeochemical, and hydrological processes, as well as climate and land use, dictate the amount of Si exported by streams. Understanding Si regimes—the seasonal patterns of Si concentrations—can help identify processes driving Si export. We analyzed Si concentrations from over 200 stream sites across the Northern Hemisphere to establish distinct Si regimes and evaluated how often sites moved among regimes over their period of record. We observed five distinct regimes across diverse stream sites, with nearly 60% of sites exhibiting multiple regime types over time. Our results indicate greater spatial and interannual variability in Si seasonality than previously recognized and highlight the need to characterize the watershed and climate variables that affect Si cycling across diverse ecosystems.</p>\",\"PeriodicalId\":18128,\"journal\":{\"name\":\"Limnology and Oceanography Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10372\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10372\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10372","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Establishing fluvial silicon regimes and their stability across the Northern Hemisphere
Fluvial silicon (Si) plays a critical role in controlling primary production, water quality, and carbon sequestration through supporting freshwater and marine diatom communities. Geological, biogeochemical, and hydrological processes, as well as climate and land use, dictate the amount of Si exported by streams. Understanding Si regimes—the seasonal patterns of Si concentrations—can help identify processes driving Si export. We analyzed Si concentrations from over 200 stream sites across the Northern Hemisphere to establish distinct Si regimes and evaluated how often sites moved among regimes over their period of record. We observed five distinct regimes across diverse stream sites, with nearly 60% of sites exhibiting multiple regime types over time. Our results indicate greater spatial and interannual variability in Si seasonality than previously recognized and highlight the need to characterize the watershed and climate variables that affect Si cycling across diverse ecosystems.
期刊介绍:
Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.