Omar Maraqa;Sylvester Aboagye;Telex M. N. Ngatched
{"title":"光学 STAR-RIS 辅助 VLC 系统:RSMA 与 NOMA","authors":"Omar Maraqa;Sylvester Aboagye;Telex M. N. Ngatched","doi":"10.1109/OJCOMS.2023.3347534","DOIUrl":null,"url":null,"abstract":"A critical concern within the realm of visible light communications (VLC) pertains to enhancing system data rate, particularly in scenarios where the direct line-of-sight (LoS) connection is obstructed by obstacles. The deployment of meta-surface-based simultaneous transmission and reflection reconfigurable intelligent surface (STAR-RIS) has emerged to combat challenging LoS blockage scenarios and to provide 360° coverage in radio-frequency wireless systems. Recently, the concept of optical simultaneous transmission and reflection reconfigurable intelligent surface (OSTAR-RIS) has been promoted for VLC systems. This work is dedicated to studying the performance of OSTAR-RIS in detail and unveiling the VLC system performance gain under such technology. Specifically, we propose a novel multi-user indoor VLC system that is assisted by OSTAR-RIS. To improve the sum rate performance of the proposed system, both power-domain non-orthogonal multiple access (NOMA) and rate splitting multiple access (RSMA) are investigated in this work. To realize this, a sum rate maximization problem that jointly optimizes the roll and yaw angles of the reflector elements as well as the refractive index of the refractor elements in OSTAR-RIS is formulated, solved, and evaluated. The maximization problem takes into account practical considerations, such as the presence of non-users (i.e., blockers) and the orientation of the recipient’s device. The sine-cosine meta-heuristic algorithm is employed to get the optimal solution of the formulated non-convex optimization problem. Moreover, the study delves into the sum energy efficiency optimization of the proposed system. Simulation results indicate that the proposed OSTAR-RIS RSMA-aided VLC system outperforms the OSTAR-RIS NOMA-based VLC system in terms of both the sum rate and the sum energy efficiency.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"430-441"},"PeriodicalIF":6.3000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375270","citationCount":"0","resultStr":"{\"title\":\"Optical STAR-RIS-Aided VLC Systems: RSMA Versus NOMA\",\"authors\":\"Omar Maraqa;Sylvester Aboagye;Telex M. N. Ngatched\",\"doi\":\"10.1109/OJCOMS.2023.3347534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A critical concern within the realm of visible light communications (VLC) pertains to enhancing system data rate, particularly in scenarios where the direct line-of-sight (LoS) connection is obstructed by obstacles. The deployment of meta-surface-based simultaneous transmission and reflection reconfigurable intelligent surface (STAR-RIS) has emerged to combat challenging LoS blockage scenarios and to provide 360° coverage in radio-frequency wireless systems. Recently, the concept of optical simultaneous transmission and reflection reconfigurable intelligent surface (OSTAR-RIS) has been promoted for VLC systems. This work is dedicated to studying the performance of OSTAR-RIS in detail and unveiling the VLC system performance gain under such technology. Specifically, we propose a novel multi-user indoor VLC system that is assisted by OSTAR-RIS. To improve the sum rate performance of the proposed system, both power-domain non-orthogonal multiple access (NOMA) and rate splitting multiple access (RSMA) are investigated in this work. To realize this, a sum rate maximization problem that jointly optimizes the roll and yaw angles of the reflector elements as well as the refractive index of the refractor elements in OSTAR-RIS is formulated, solved, and evaluated. The maximization problem takes into account practical considerations, such as the presence of non-users (i.e., blockers) and the orientation of the recipient’s device. The sine-cosine meta-heuristic algorithm is employed to get the optimal solution of the formulated non-convex optimization problem. Moreover, the study delves into the sum energy efficiency optimization of the proposed system. Simulation results indicate that the proposed OSTAR-RIS RSMA-aided VLC system outperforms the OSTAR-RIS NOMA-based VLC system in terms of both the sum rate and the sum energy efficiency.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":\"5 \",\"pages\":\"430-441\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375270\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10375270/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10375270/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Optical STAR-RIS-Aided VLC Systems: RSMA Versus NOMA
A critical concern within the realm of visible light communications (VLC) pertains to enhancing system data rate, particularly in scenarios where the direct line-of-sight (LoS) connection is obstructed by obstacles. The deployment of meta-surface-based simultaneous transmission and reflection reconfigurable intelligent surface (STAR-RIS) has emerged to combat challenging LoS blockage scenarios and to provide 360° coverage in radio-frequency wireless systems. Recently, the concept of optical simultaneous transmission and reflection reconfigurable intelligent surface (OSTAR-RIS) has been promoted for VLC systems. This work is dedicated to studying the performance of OSTAR-RIS in detail and unveiling the VLC system performance gain under such technology. Specifically, we propose a novel multi-user indoor VLC system that is assisted by OSTAR-RIS. To improve the sum rate performance of the proposed system, both power-domain non-orthogonal multiple access (NOMA) and rate splitting multiple access (RSMA) are investigated in this work. To realize this, a sum rate maximization problem that jointly optimizes the roll and yaw angles of the reflector elements as well as the refractive index of the refractor elements in OSTAR-RIS is formulated, solved, and evaluated. The maximization problem takes into account practical considerations, such as the presence of non-users (i.e., blockers) and the orientation of the recipient’s device. The sine-cosine meta-heuristic algorithm is employed to get the optimal solution of the formulated non-convex optimization problem. Moreover, the study delves into the sum energy efficiency optimization of the proposed system. Simulation results indicate that the proposed OSTAR-RIS RSMA-aided VLC system outperforms the OSTAR-RIS NOMA-based VLC system in terms of both the sum rate and the sum energy efficiency.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.