光学 STAR-RIS 辅助 VLC 系统:RSMA 与 NOMA

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Omar Maraqa;Sylvester Aboagye;Telex M. N. Ngatched
{"title":"光学 STAR-RIS 辅助 VLC 系统:RSMA 与 NOMA","authors":"Omar Maraqa;Sylvester Aboagye;Telex M. N. Ngatched","doi":"10.1109/OJCOMS.2023.3347534","DOIUrl":null,"url":null,"abstract":"A critical concern within the realm of visible light communications (VLC) pertains to enhancing system data rate, particularly in scenarios where the direct line-of-sight (LoS) connection is obstructed by obstacles. The deployment of meta-surface-based simultaneous transmission and reflection reconfigurable intelligent surface (STAR-RIS) has emerged to combat challenging LoS blockage scenarios and to provide 360° coverage in radio-frequency wireless systems. Recently, the concept of optical simultaneous transmission and reflection reconfigurable intelligent surface (OSTAR-RIS) has been promoted for VLC systems. This work is dedicated to studying the performance of OSTAR-RIS in detail and unveiling the VLC system performance gain under such technology. Specifically, we propose a novel multi-user indoor VLC system that is assisted by OSTAR-RIS. To improve the sum rate performance of the proposed system, both power-domain non-orthogonal multiple access (NOMA) and rate splitting multiple access (RSMA) are investigated in this work. To realize this, a sum rate maximization problem that jointly optimizes the roll and yaw angles of the reflector elements as well as the refractive index of the refractor elements in OSTAR-RIS is formulated, solved, and evaluated. The maximization problem takes into account practical considerations, such as the presence of non-users (i.e., blockers) and the orientation of the recipient’s device. The sine-cosine meta-heuristic algorithm is employed to get the optimal solution of the formulated non-convex optimization problem. Moreover, the study delves into the sum energy efficiency optimization of the proposed system. Simulation results indicate that the proposed OSTAR-RIS RSMA-aided VLC system outperforms the OSTAR-RIS NOMA-based VLC system in terms of both the sum rate and the sum energy efficiency.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"430-441"},"PeriodicalIF":6.3000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375270","citationCount":"0","resultStr":"{\"title\":\"Optical STAR-RIS-Aided VLC Systems: RSMA Versus NOMA\",\"authors\":\"Omar Maraqa;Sylvester Aboagye;Telex M. N. Ngatched\",\"doi\":\"10.1109/OJCOMS.2023.3347534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A critical concern within the realm of visible light communications (VLC) pertains to enhancing system data rate, particularly in scenarios where the direct line-of-sight (LoS) connection is obstructed by obstacles. The deployment of meta-surface-based simultaneous transmission and reflection reconfigurable intelligent surface (STAR-RIS) has emerged to combat challenging LoS blockage scenarios and to provide 360° coverage in radio-frequency wireless systems. Recently, the concept of optical simultaneous transmission and reflection reconfigurable intelligent surface (OSTAR-RIS) has been promoted for VLC systems. This work is dedicated to studying the performance of OSTAR-RIS in detail and unveiling the VLC system performance gain under such technology. Specifically, we propose a novel multi-user indoor VLC system that is assisted by OSTAR-RIS. To improve the sum rate performance of the proposed system, both power-domain non-orthogonal multiple access (NOMA) and rate splitting multiple access (RSMA) are investigated in this work. To realize this, a sum rate maximization problem that jointly optimizes the roll and yaw angles of the reflector elements as well as the refractive index of the refractor elements in OSTAR-RIS is formulated, solved, and evaluated. The maximization problem takes into account practical considerations, such as the presence of non-users (i.e., blockers) and the orientation of the recipient’s device. The sine-cosine meta-heuristic algorithm is employed to get the optimal solution of the formulated non-convex optimization problem. Moreover, the study delves into the sum energy efficiency optimization of the proposed system. Simulation results indicate that the proposed OSTAR-RIS RSMA-aided VLC system outperforms the OSTAR-RIS NOMA-based VLC system in terms of both the sum rate and the sum energy efficiency.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":\"5 \",\"pages\":\"430-441\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375270\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10375270/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10375270/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

可见光通信(VLC)领域的一个关键问题是如何提高系统数据传输速率,特别是在直接视线(LoS)连接被障碍物阻挡的情况下。基于元表面的同步传输和反射可重构智能表面(STAR-RIS)的部署已经出现,以应对具有挑战性的LoS阻塞情况,并在射频无线系统中提供360°覆盖。最近,光学同步传输和反射可重构智能表面(OSTAR-RIS)的概念在 VLC 系统中得到了推广。这项工作致力于详细研究 OSTAR-RIS 的性能,并揭示在这种技术下 VLC 系统的性能增益。具体来说,我们提出了一种由 OSTAR-RIS 辅助的新型多用户室内 VLC 系统。为了提高拟议系统的总和速率性能,本研究对功率域非正交多址接入(NOMA)和速率分裂多址接入(RSMA)进行了研究。为了实现这一目标,我们提出、解决并评估了一个和速率最大化问题,该问题联合优化了 OSTAR-RIS 中反射器元件的滚动角和偏航角以及折射器元件的折射率。最大化问题考虑到了实际因素,如非用户(即阻挡者)的存在和接收者设备的方向。研究采用了正弦余弦元启发式算法,以获得所提出的非凸优化问题的最优解。此外,研究还深入探讨了拟议系统的总能效优化问题。仿真结果表明,拟议的 OSTAR-RIS RSMA 辅助 VLC 系统在总和速率和总和能效方面都优于基于 OSTAR-RIS NOMA 的 VLC 系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical STAR-RIS-Aided VLC Systems: RSMA Versus NOMA
A critical concern within the realm of visible light communications (VLC) pertains to enhancing system data rate, particularly in scenarios where the direct line-of-sight (LoS) connection is obstructed by obstacles. The deployment of meta-surface-based simultaneous transmission and reflection reconfigurable intelligent surface (STAR-RIS) has emerged to combat challenging LoS blockage scenarios and to provide 360° coverage in radio-frequency wireless systems. Recently, the concept of optical simultaneous transmission and reflection reconfigurable intelligent surface (OSTAR-RIS) has been promoted for VLC systems. This work is dedicated to studying the performance of OSTAR-RIS in detail and unveiling the VLC system performance gain under such technology. Specifically, we propose a novel multi-user indoor VLC system that is assisted by OSTAR-RIS. To improve the sum rate performance of the proposed system, both power-domain non-orthogonal multiple access (NOMA) and rate splitting multiple access (RSMA) are investigated in this work. To realize this, a sum rate maximization problem that jointly optimizes the roll and yaw angles of the reflector elements as well as the refractive index of the refractor elements in OSTAR-RIS is formulated, solved, and evaluated. The maximization problem takes into account practical considerations, such as the presence of non-users (i.e., blockers) and the orientation of the recipient’s device. The sine-cosine meta-heuristic algorithm is employed to get the optimal solution of the formulated non-convex optimization problem. Moreover, the study delves into the sum energy efficiency optimization of the proposed system. Simulation results indicate that the proposed OSTAR-RIS RSMA-aided VLC system outperforms the OSTAR-RIS NOMA-based VLC system in terms of both the sum rate and the sum energy efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信