S.R. Kiran Kumar , Harisha S , Jalaja P , B.K. Jayanna , K. Yogesh Kumar , M.S. Anantha
{"title":"二氧化锡纳米粒子在多巴胺电化学传感方面的发展,包括光催化有毒染料降解","authors":"S.R. Kiran Kumar , Harisha S , Jalaja P , B.K. Jayanna , K. Yogesh Kumar , M.S. Anantha","doi":"10.1016/j.sintl.2023.100278","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, SnO<sub>2</sub> nanoparticles were synthesized, and their structural features were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM) techniques. Modified electrodes (MCPE) were prepared and utilized to access the electrochemical behaviour of dopamine. This study was conducted in a phosphate buffer solution with a pH value of 7.2. The results indicate that the modified carbon paste electrode (MCPE), with a high active surface area, exhibited excellent electrochemical sensing properties and demonstrated good reproducibility and high sensitivity for the electrochemical determination of DA. Potentially interfering compounds were tested at the surface of the proposed sensor, confirming that, they did not interfere with the determination of DA under optimum condition. Additionally, the photocatalytic properties of SnO<sub>2</sub> were evaluated in degradation of cationic and anionic dyes. It was concluded that the higher photocatalytic activity in SnO<sub>2</sub> nanocomposites was attributed to their porosity and high surface area.</p></div>","PeriodicalId":21733,"journal":{"name":"Sensors International","volume":"5 ","pages":"Article 100278"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666351123000529/pdfft?md5=fe8198267d52c9ea6876da508bce1d60&pid=1-s2.0-S2666351123000529-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Evolution of SnO2 nanoparticles for the electrochemical sensing of dopamine including photocatalytic toxic dyes degradation\",\"authors\":\"S.R. Kiran Kumar , Harisha S , Jalaja P , B.K. Jayanna , K. Yogesh Kumar , M.S. Anantha\",\"doi\":\"10.1016/j.sintl.2023.100278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present study, SnO<sub>2</sub> nanoparticles were synthesized, and their structural features were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM) techniques. Modified electrodes (MCPE) were prepared and utilized to access the electrochemical behaviour of dopamine. This study was conducted in a phosphate buffer solution with a pH value of 7.2. The results indicate that the modified carbon paste electrode (MCPE), with a high active surface area, exhibited excellent electrochemical sensing properties and demonstrated good reproducibility and high sensitivity for the electrochemical determination of DA. Potentially interfering compounds were tested at the surface of the proposed sensor, confirming that, they did not interfere with the determination of DA under optimum condition. Additionally, the photocatalytic properties of SnO<sub>2</sub> were evaluated in degradation of cationic and anionic dyes. It was concluded that the higher photocatalytic activity in SnO<sub>2</sub> nanocomposites was attributed to their porosity and high surface area.</p></div>\",\"PeriodicalId\":21733,\"journal\":{\"name\":\"Sensors International\",\"volume\":\"5 \",\"pages\":\"Article 100278\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666351123000529/pdfft?md5=fe8198267d52c9ea6876da508bce1d60&pid=1-s2.0-S2666351123000529-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666351123000529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors International","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666351123000529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本研究合成了 SnO2 纳米粒子,并通过 X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、能量色散 X 射线分析 (EDX) 和透射电子显微镜 (TEM) 技术对其结构特征进行了评估。制备了改性电极(MCPE),并利用它来研究多巴胺的电化学行为。这项研究是在 pH 值为 7.2 的磷酸盐缓冲溶液中进行的。结果表明,具有高活性表面积的改性碳浆电极(MCPE)表现出优异的电化学传感特性,在电化学测定多巴胺时具有良好的重现性和高灵敏度。对拟议传感器表面的潜在干扰化合物进行了测试,结果表明,在最佳条件下,它们不会干扰 DA 的测定。此外,还评估了二氧化锡在降解阳离子和阴离子染料时的光催化特性。结果表明,二氧化锡纳米复合材料具有较高的光催化活性,这要归功于它们的多孔性和高表面积。
Evolution of SnO2 nanoparticles for the electrochemical sensing of dopamine including photocatalytic toxic dyes degradation
In the present study, SnO2 nanoparticles were synthesized, and their structural features were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM) techniques. Modified electrodes (MCPE) were prepared and utilized to access the electrochemical behaviour of dopamine. This study was conducted in a phosphate buffer solution with a pH value of 7.2. The results indicate that the modified carbon paste electrode (MCPE), with a high active surface area, exhibited excellent electrochemical sensing properties and demonstrated good reproducibility and high sensitivity for the electrochemical determination of DA. Potentially interfering compounds were tested at the surface of the proposed sensor, confirming that, they did not interfere with the determination of DA under optimum condition. Additionally, the photocatalytic properties of SnO2 were evaluated in degradation of cationic and anionic dyes. It was concluded that the higher photocatalytic activity in SnO2 nanocomposites was attributed to their porosity and high surface area.