一个中等城市地区云量和降雨量变化的证据--佐治亚州奥古斯塔的气候学分析

IF 3.9 Q2 ENVIRONMENTAL SCIENCES
Jordan McLeod , Marshall Shepherd , Max Appelbaum
{"title":"一个中等城市地区云量和降雨量变化的证据--佐治亚州奥古斯塔的气候学分析","authors":"Jordan McLeod ,&nbsp;Marshall Shepherd ,&nbsp;Max Appelbaum","doi":"10.1016/j.cacint.2024.100141","DOIUrl":null,"url":null,"abstract":"<div><p>Cloud and rainfall distributions in urban spaces have implications for planning, hydrological response, reservoir management, renewable energy generation, transportation, and agricultural productivity. Studies have confirmed that large urban areas can initiate or modify precipitation, but there are still questions about the role of city size and atmospheric interactions. The majority of case study approaches have focused on large cities or urban clusters and have largely ignored small to moderate sized cities. Herein, an analysis of the Augusta, Georgia metropolitan statistical area is conducted. Using a gridded, daily multi-sensor precipitation dataset and satellite-based cloud cover climatology, the warm seasons (June, July, and August) covering the period from 2002 to 2019 were analyzed using spatial comparisons within an upwind-downwind framework and z-score statistics. Such methodologies have been published for larger urban areas. We confirmed that a moderate-sized city like Augusta, Georgia and neighboring Aiken, South Carolina is associated with spatial patterns consistent with the “urban rainfall effect” (URE) and possibly an “urban cloud effect” (UCE). Contextual analysis of other local mesoscale signatures related to nearby water bodies are also provided as a sanity check on process identification.</p></div>","PeriodicalId":52395,"journal":{"name":"City and Environment Interactions","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590252024000011/pdfft?md5=f35874706cd70bd637c0c13f746521a0&pid=1-s2.0-S2590252024000011-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Evidence of cloud and rainfall modification in a mid-sized urban area – A climatological analysis of Augusta, Georgia\",\"authors\":\"Jordan McLeod ,&nbsp;Marshall Shepherd ,&nbsp;Max Appelbaum\",\"doi\":\"10.1016/j.cacint.2024.100141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cloud and rainfall distributions in urban spaces have implications for planning, hydrological response, reservoir management, renewable energy generation, transportation, and agricultural productivity. Studies have confirmed that large urban areas can initiate or modify precipitation, but there are still questions about the role of city size and atmospheric interactions. The majority of case study approaches have focused on large cities or urban clusters and have largely ignored small to moderate sized cities. Herein, an analysis of the Augusta, Georgia metropolitan statistical area is conducted. Using a gridded, daily multi-sensor precipitation dataset and satellite-based cloud cover climatology, the warm seasons (June, July, and August) covering the period from 2002 to 2019 were analyzed using spatial comparisons within an upwind-downwind framework and z-score statistics. Such methodologies have been published for larger urban areas. We confirmed that a moderate-sized city like Augusta, Georgia and neighboring Aiken, South Carolina is associated with spatial patterns consistent with the “urban rainfall effect” (URE) and possibly an “urban cloud effect” (UCE). Contextual analysis of other local mesoscale signatures related to nearby water bodies are also provided as a sanity check on process identification.</p></div>\",\"PeriodicalId\":52395,\"journal\":{\"name\":\"City and Environment Interactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590252024000011/pdfft?md5=f35874706cd70bd637c0c13f746521a0&pid=1-s2.0-S2590252024000011-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"City and Environment Interactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590252024000011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"City and Environment Interactions","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590252024000011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

城市空间的云层和降雨分布对规划、水文响应、水库管理、可再生能源发电、交通和农业生产力都有影响。研究证实,大型城市区域可以引发或改变降水,但对于城市规模和大气相互作用的作用仍存在疑问。大多数案例研究方法都侧重于大城市或城市群,而在很大程度上忽略了中小城市。本文对佐治亚州奥古斯塔大都会统计区进行了分析。利用网格化的每日多传感器降水数据集和基于卫星的云层气候学,在上风-下风框架内使用空间比较法和 Z-分数统计法对 2002 年至 2019 年期间的暖季(6 月、7 月和 8 月)进行了分析。这种方法已针对较大的城市地区发布。我们证实,像佐治亚州奥古斯塔和邻近的南卡罗来纳州艾肯这样的中等规模城市,其空间模式与 "城市降雨效应"(URE)以及可能的 "城市云效应"(UCE)相一致。此外,还提供了与附近水体有关的其他地方中尺度特征的背景分析,作为对过程识别的检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evidence of cloud and rainfall modification in a mid-sized urban area – A climatological analysis of Augusta, Georgia

Cloud and rainfall distributions in urban spaces have implications for planning, hydrological response, reservoir management, renewable energy generation, transportation, and agricultural productivity. Studies have confirmed that large urban areas can initiate or modify precipitation, but there are still questions about the role of city size and atmospheric interactions. The majority of case study approaches have focused on large cities or urban clusters and have largely ignored small to moderate sized cities. Herein, an analysis of the Augusta, Georgia metropolitan statistical area is conducted. Using a gridded, daily multi-sensor precipitation dataset and satellite-based cloud cover climatology, the warm seasons (June, July, and August) covering the period from 2002 to 2019 were analyzed using spatial comparisons within an upwind-downwind framework and z-score statistics. Such methodologies have been published for larger urban areas. We confirmed that a moderate-sized city like Augusta, Georgia and neighboring Aiken, South Carolina is associated with spatial patterns consistent with the “urban rainfall effect” (URE) and possibly an “urban cloud effect” (UCE). Contextual analysis of other local mesoscale signatures related to nearby water bodies are also provided as a sanity check on process identification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
City and Environment Interactions
City and Environment Interactions Social Sciences-Urban Studies
CiteScore
6.00
自引率
3.00%
发文量
15
审稿时长
27 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信