克莱因瓶 II 不包括未成年人。级联

IF 1.2 1区 数学 Q1 MATHEMATICS
Bojan Mohar , Petr Škoda
{"title":"克莱因瓶 II 不包括未成年人。级联","authors":"Bojan Mohar ,&nbsp;Petr Škoda","doi":"10.1016/j.jctb.2023.12.006","DOIUrl":null,"url":null,"abstract":"<div><p>Graphs that are critical (minimal excluded minors) for embeddability in surfaces are studied. In Part I, it was shown that graphs that are critical for embeddings into surfaces of Euler genus <em>k</em><span> or for embeddings into nonorientable surface of genus </span><em>k</em><span><span> are built from 3-connected components, called hoppers and cascades. In Part II, all cascades for Euler genus 2 are classified. As a consequence, the complete list of obstructions of connectivity 2 for embedding graphs into the </span>Klein bottle is obtained.</span></p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"166 ","pages":"Pages 80-108"},"PeriodicalIF":1.2000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Excluded minors for the Klein bottle II. Cascades\",\"authors\":\"Bojan Mohar ,&nbsp;Petr Škoda\",\"doi\":\"10.1016/j.jctb.2023.12.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Graphs that are critical (minimal excluded minors) for embeddability in surfaces are studied. In Part I, it was shown that graphs that are critical for embeddings into surfaces of Euler genus <em>k</em><span> or for embeddings into nonorientable surface of genus </span><em>k</em><span><span> are built from 3-connected components, called hoppers and cascades. In Part II, all cascades for Euler genus 2 are classified. As a consequence, the complete list of obstructions of connectivity 2 for embedding graphs into the </span>Klein bottle is obtained.</span></p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"166 \",\"pages\":\"Pages 80-108\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000017\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000017","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了对嵌入曲面至关重要的图形(最小排除最小)。在第一部分中,研究表明对于嵌入欧拉属 k 的曲面或嵌入属 k 的不可定向曲面至关重要的图形是由 3 个相连的分量构建而成的,这些分量被称为跳板和级联。在第二部分中,将对欧拉属 2 的所有级联进行分类。因此,可以得到将图形嵌入克莱因瓶的连通性 2 的完整障碍列表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Excluded minors for the Klein bottle II. Cascades

Graphs that are critical (minimal excluded minors) for embeddability in surfaces are studied. In Part I, it was shown that graphs that are critical for embeddings into surfaces of Euler genus k or for embeddings into nonorientable surface of genus k are built from 3-connected components, called hoppers and cascades. In Part II, all cascades for Euler genus 2 are classified. As a consequence, the complete list of obstructions of connectivity 2 for embedding graphs into the Klein bottle is obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信