Friederike Elisabeth Hedley, Emmett Larsen, Aprajita Mohanty, Jeremiah Zhe Liu, Jingwen Jin
{"title":"通过不确定性量化了解焦虑。","authors":"Friederike Elisabeth Hedley, Emmett Larsen, Aprajita Mohanty, Jeremiah Zhe Liu, Jingwen Jin","doi":"10.1111/bjop.12693","DOIUrl":null,"url":null,"abstract":"<p><p>Uncertainty has been a central concept in psychological theories of anxiety. However, this concept has been plagued by divergent connotations and operationalizations. The lack of consensus hinders the current search for cognitive and biological mechanisms of anxiety, jeopardizes theory creation and comparison, and restrains translation of basic research into improved diagnoses and interventions. Drawing upon uncertainty decomposition in Bayesian Decision Theory, we propose a well-defined conceptual structure of uncertainty in cognitive and clinical sciences, with a focus on anxiety. We discuss how this conceptual structure provides clarity and can be naturally applied to existing frameworks of psychopathology research. Furthermore, it allows formal quantification of various types of uncertainty that can benefit both research and clinical practice in the era of computational psychiatry.</p>","PeriodicalId":9300,"journal":{"name":"British journal of psychology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding anxiety through uncertainty quantification.\",\"authors\":\"Friederike Elisabeth Hedley, Emmett Larsen, Aprajita Mohanty, Jeremiah Zhe Liu, Jingwen Jin\",\"doi\":\"10.1111/bjop.12693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Uncertainty has been a central concept in psychological theories of anxiety. However, this concept has been plagued by divergent connotations and operationalizations. The lack of consensus hinders the current search for cognitive and biological mechanisms of anxiety, jeopardizes theory creation and comparison, and restrains translation of basic research into improved diagnoses and interventions. Drawing upon uncertainty decomposition in Bayesian Decision Theory, we propose a well-defined conceptual structure of uncertainty in cognitive and clinical sciences, with a focus on anxiety. We discuss how this conceptual structure provides clarity and can be naturally applied to existing frameworks of psychopathology research. Furthermore, it allows formal quantification of various types of uncertainty that can benefit both research and clinical practice in the era of computational psychiatry.</p>\",\"PeriodicalId\":9300,\"journal\":{\"name\":\"British journal of psychology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British journal of psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/bjop.12693\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British journal of psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bjop.12693","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
Understanding anxiety through uncertainty quantification.
Uncertainty has been a central concept in psychological theories of anxiety. However, this concept has been plagued by divergent connotations and operationalizations. The lack of consensus hinders the current search for cognitive and biological mechanisms of anxiety, jeopardizes theory creation and comparison, and restrains translation of basic research into improved diagnoses and interventions. Drawing upon uncertainty decomposition in Bayesian Decision Theory, we propose a well-defined conceptual structure of uncertainty in cognitive and clinical sciences, with a focus on anxiety. We discuss how this conceptual structure provides clarity and can be naturally applied to existing frameworks of psychopathology research. Furthermore, it allows formal quantification of various types of uncertainty that can benefit both research and clinical practice in the era of computational psychiatry.
期刊介绍:
The British Journal of Psychology publishes original research on all aspects of general psychology including cognition; health and clinical psychology; developmental, social and occupational psychology. For information on specific requirements, please view Notes for Contributors. We attract a large number of international submissions each year which make major contributions across the range of psychology.