Kevin A Giordano, Adam J Barrack, William M Murrah, Andrew R Karduna, Lori A Michener, Kyle W Wasserberger
{"title":"棒球投球中数据规范化的使用和可接受性。","authors":"Kevin A Giordano, Adam J Barrack, William M Murrah, Andrew R Karduna, Lori A Michener, Kyle W Wasserberger","doi":"10.1080/14763141.2024.2302830","DOIUrl":null,"url":null,"abstract":"<p><p>In baseball pitching biomechanics, kinetic values are commonly ratio 'normalised' by dividing by mass or mass*height to allow for comparison between athletes of different sizes. However, creating a normalised ratio variable should meet certain statistical assumptions. Our purpose was to determine if elbow valgus torque predicted by pitching velocity is influenced by normalisation using regression model comparison with and without normalised torque values. Motion capture data for youth to professional pitchers (<i>n</i> = 1988) were retrospectively analysed. Normalisation assumptions were tested by comparing linear regression models to analogous models with an intercept fixed at zero and by examining remaining correlations between the confounding variable and new, normalised variable. Both mass (<i>p</i> < 0.001) and mass*height (<i>p</i> < 0.001) normalisation did not remove their respective relationship with torque. After accounting for mass or mass and height, velocity predicted 10% of variance in elbow valgus torque, whereas velocity predicted 59% of mass normalised torque and 45% of mass*height normalised torque. Ratio normalisation does not fully account for anthropometric variables that differ across pitchers and leads to different conclusions in the magnitude of velocity's predictive effect on elbow valgus torque. Therefore, we recommend using regression model comparison to account for anthropometric variables in baseball pitching kinetic data.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"3430-3441"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Usage and acceptability of data normalization in baseball pitching.\",\"authors\":\"Kevin A Giordano, Adam J Barrack, William M Murrah, Andrew R Karduna, Lori A Michener, Kyle W Wasserberger\",\"doi\":\"10.1080/14763141.2024.2302830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In baseball pitching biomechanics, kinetic values are commonly ratio 'normalised' by dividing by mass or mass*height to allow for comparison between athletes of different sizes. However, creating a normalised ratio variable should meet certain statistical assumptions. Our purpose was to determine if elbow valgus torque predicted by pitching velocity is influenced by normalisation using regression model comparison with and without normalised torque values. Motion capture data for youth to professional pitchers (<i>n</i> = 1988) were retrospectively analysed. Normalisation assumptions were tested by comparing linear regression models to analogous models with an intercept fixed at zero and by examining remaining correlations between the confounding variable and new, normalised variable. Both mass (<i>p</i> < 0.001) and mass*height (<i>p</i> < 0.001) normalisation did not remove their respective relationship with torque. After accounting for mass or mass and height, velocity predicted 10% of variance in elbow valgus torque, whereas velocity predicted 59% of mass normalised torque and 45% of mass*height normalised torque. Ratio normalisation does not fully account for anthropometric variables that differ across pitchers and leads to different conclusions in the magnitude of velocity's predictive effect on elbow valgus torque. Therefore, we recommend using regression model comparison to account for anthropometric variables in baseball pitching kinetic data.</p>\",\"PeriodicalId\":49482,\"journal\":{\"name\":\"Sports Biomechanics\",\"volume\":\" \",\"pages\":\"3430-3441\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sports Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14763141.2024.2302830\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2024.2302830","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Usage and acceptability of data normalization in baseball pitching.
In baseball pitching biomechanics, kinetic values are commonly ratio 'normalised' by dividing by mass or mass*height to allow for comparison between athletes of different sizes. However, creating a normalised ratio variable should meet certain statistical assumptions. Our purpose was to determine if elbow valgus torque predicted by pitching velocity is influenced by normalisation using regression model comparison with and without normalised torque values. Motion capture data for youth to professional pitchers (n = 1988) were retrospectively analysed. Normalisation assumptions were tested by comparing linear regression models to analogous models with an intercept fixed at zero and by examining remaining correlations between the confounding variable and new, normalised variable. Both mass (p < 0.001) and mass*height (p < 0.001) normalisation did not remove their respective relationship with torque. After accounting for mass or mass and height, velocity predicted 10% of variance in elbow valgus torque, whereas velocity predicted 59% of mass normalised torque and 45% of mass*height normalised torque. Ratio normalisation does not fully account for anthropometric variables that differ across pitchers and leads to different conclusions in the magnitude of velocity's predictive effect on elbow valgus torque. Therefore, we recommend using regression model comparison to account for anthropometric variables in baseball pitching kinetic data.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.