{"title":"对加成制造的膝下假肢套筒进行静态失效预测的数值模拟和实验测试。","authors":"Kavuri Karthik Rajashekar, Srinivasa Prakash Regalla, Kurra Suresh, Prakash Narayan Shrivastava","doi":"10.1177/09544119231221179","DOIUrl":null,"url":null,"abstract":"<p><p>The socket of a transtibial prosthesis is a structural part customized to a patient's amputated residual lower limb. The free-form geometry of the socket can be suitable for additive manufacturing (AM) to save time and cost. However, the mechanical fracture of additively manufactured lower limb prostheses is not yet fully understood. A novel experimental method and numerical approach by finite element method (FEM) to test the strength and fracture behavior of a lower limb prosthetic socket of acrylonitrile butadiene styrene (ABS), reverse-engineered using computer-aided design (CAD) from the actual amputee's residual limb and manufactured using fused filament fabrication (FFF) are proposed in the present work. The mechanical behavior, von Mises stress distribution, and the damage status of layered AM sockets of different thicknesses were simulated by FEM using Hashin's transversely isotropic mechanical damage model, initially developed for composite materials. The experimental work showed that the fracture failure initiated at the corner of the lobe in the 4 mm thickness socket at a failure load of 918.5 N. The FEM results predicted this failure load to be 896.6 N, with only a 2.45% error as compared to the experiment. The failure loads predicted by FEM in the sockets with thicknesses of 3, 5, and 6 mm were 618.1, 1008.6, and 1105.2 N, respectively. The present work provides a dependable method for testing a below-knee prosthetic socket against static failure and arriving at a factor-of-safety (FoS) based socket thickness selection for any amputee.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation and experimental testing for static failure prediction in additively manufactured below-knee prosthetic sockets.\",\"authors\":\"Kavuri Karthik Rajashekar, Srinivasa Prakash Regalla, Kurra Suresh, Prakash Narayan Shrivastava\",\"doi\":\"10.1177/09544119231221179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The socket of a transtibial prosthesis is a structural part customized to a patient's amputated residual lower limb. The free-form geometry of the socket can be suitable for additive manufacturing (AM) to save time and cost. However, the mechanical fracture of additively manufactured lower limb prostheses is not yet fully understood. A novel experimental method and numerical approach by finite element method (FEM) to test the strength and fracture behavior of a lower limb prosthetic socket of acrylonitrile butadiene styrene (ABS), reverse-engineered using computer-aided design (CAD) from the actual amputee's residual limb and manufactured using fused filament fabrication (FFF) are proposed in the present work. The mechanical behavior, von Mises stress distribution, and the damage status of layered AM sockets of different thicknesses were simulated by FEM using Hashin's transversely isotropic mechanical damage model, initially developed for composite materials. The experimental work showed that the fracture failure initiated at the corner of the lobe in the 4 mm thickness socket at a failure load of 918.5 N. The FEM results predicted this failure load to be 896.6 N, with only a 2.45% error as compared to the experiment. The failure loads predicted by FEM in the sockets with thicknesses of 3, 5, and 6 mm were 618.1, 1008.6, and 1105.2 N, respectively. The present work provides a dependable method for testing a below-knee prosthetic socket against static failure and arriving at a factor-of-safety (FoS) based socket thickness selection for any amputee.</p>\",\"PeriodicalId\":20666,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544119231221179\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119231221179","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Numerical simulation and experimental testing for static failure prediction in additively manufactured below-knee prosthetic sockets.
The socket of a transtibial prosthesis is a structural part customized to a patient's amputated residual lower limb. The free-form geometry of the socket can be suitable for additive manufacturing (AM) to save time and cost. However, the mechanical fracture of additively manufactured lower limb prostheses is not yet fully understood. A novel experimental method and numerical approach by finite element method (FEM) to test the strength and fracture behavior of a lower limb prosthetic socket of acrylonitrile butadiene styrene (ABS), reverse-engineered using computer-aided design (CAD) from the actual amputee's residual limb and manufactured using fused filament fabrication (FFF) are proposed in the present work. The mechanical behavior, von Mises stress distribution, and the damage status of layered AM sockets of different thicknesses were simulated by FEM using Hashin's transversely isotropic mechanical damage model, initially developed for composite materials. The experimental work showed that the fracture failure initiated at the corner of the lobe in the 4 mm thickness socket at a failure load of 918.5 N. The FEM results predicted this failure load to be 896.6 N, with only a 2.45% error as compared to the experiment. The failure loads predicted by FEM in the sockets with thicknesses of 3, 5, and 6 mm were 618.1, 1008.6, and 1105.2 N, respectively. The present work provides a dependable method for testing a below-knee prosthetic socket against static failure and arriving at a factor-of-safety (FoS) based socket thickness selection for any amputee.
期刊介绍:
The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.