Emmanuel Tetteh Doku, Augustina Angelina Sylverken, J D Ebenezer Belford
{"title":"用于矿山尾矿坝植物修复的植物根瘤微生物组。","authors":"Emmanuel Tetteh Doku, Augustina Angelina Sylverken, J D Ebenezer Belford","doi":"10.1080/15226514.2024.2301994","DOIUrl":null,"url":null,"abstract":"<p><p>Rhizospheric microbial communities improve the effectiveness of hyperaccumulators in the phytoremediation of heavy metals. However, limited access to tailing dams and inadequate assessment of plants' phytoremediation potential limit the characterization of native accumulators, hindering the effectiveness of local remediation efforts. This study evaluates the heavy metal sequestration potentials of <i>Pennisetum purpureum</i>, <i>Leucaena leucocephala,</i> and <i>Pteris vittata</i> and their associated rhizospheric microbial communities at the Marlu and Pompora tailing dams in Ghana. The results indicate shoot hyperaccumulation of Cd (334.5 ± 6.3 mg/kg) and Fe (10,647.0 ± 12.6 mg/kg) in <i>P. purpureum</i> and <i>L. leucocephala</i>, respectively. Analysis of rhizospheric bacterial communities revealed the impact of heavy metal contamination on bacterial community composition, associating Fe and Cd hyperaccumulation with <i>Bacillus</i>, <i>Arthrobacter</i>, and <i>Sphingomonas</i> species. This study reports the hyperaccumulation potentials of <i>L. leucocephala</i> and <i>P. purpureum</i> enhanced by associated rhizosphere bacterial communities, suggesting their potential application as an environmentally friendly remediation process of heavy metals contaminated lands.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1212-1220"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rhizosphere microbiome of plants used in phytoremediation of mine tailing dams.\",\"authors\":\"Emmanuel Tetteh Doku, Augustina Angelina Sylverken, J D Ebenezer Belford\",\"doi\":\"10.1080/15226514.2024.2301994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rhizospheric microbial communities improve the effectiveness of hyperaccumulators in the phytoremediation of heavy metals. However, limited access to tailing dams and inadequate assessment of plants' phytoremediation potential limit the characterization of native accumulators, hindering the effectiveness of local remediation efforts. This study evaluates the heavy metal sequestration potentials of <i>Pennisetum purpureum</i>, <i>Leucaena leucocephala,</i> and <i>Pteris vittata</i> and their associated rhizospheric microbial communities at the Marlu and Pompora tailing dams in Ghana. The results indicate shoot hyperaccumulation of Cd (334.5 ± 6.3 mg/kg) and Fe (10,647.0 ± 12.6 mg/kg) in <i>P. purpureum</i> and <i>L. leucocephala</i>, respectively. Analysis of rhizospheric bacterial communities revealed the impact of heavy metal contamination on bacterial community composition, associating Fe and Cd hyperaccumulation with <i>Bacillus</i>, <i>Arthrobacter</i>, and <i>Sphingomonas</i> species. This study reports the hyperaccumulation potentials of <i>L. leucocephala</i> and <i>P. purpureum</i> enhanced by associated rhizosphere bacterial communities, suggesting their potential application as an environmentally friendly remediation process of heavy metals contaminated lands.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":\" \",\"pages\":\"1212-1220\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2024.2301994\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2301994","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Rhizosphere microbiome of plants used in phytoremediation of mine tailing dams.
Rhizospheric microbial communities improve the effectiveness of hyperaccumulators in the phytoremediation of heavy metals. However, limited access to tailing dams and inadequate assessment of plants' phytoremediation potential limit the characterization of native accumulators, hindering the effectiveness of local remediation efforts. This study evaluates the heavy metal sequestration potentials of Pennisetum purpureum, Leucaena leucocephala, and Pteris vittata and their associated rhizospheric microbial communities at the Marlu and Pompora tailing dams in Ghana. The results indicate shoot hyperaccumulation of Cd (334.5 ± 6.3 mg/kg) and Fe (10,647.0 ± 12.6 mg/kg) in P. purpureum and L. leucocephala, respectively. Analysis of rhizospheric bacterial communities revealed the impact of heavy metal contamination on bacterial community composition, associating Fe and Cd hyperaccumulation with Bacillus, Arthrobacter, and Sphingomonas species. This study reports the hyperaccumulation potentials of L. leucocephala and P. purpureum enhanced by associated rhizosphere bacterial communities, suggesting their potential application as an environmentally friendly remediation process of heavy metals contaminated lands.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.