{"title":"通过电解合成作为锂离子电池阴极材料的铁基氟化物","authors":"Zengzeng Zheng, Jin Shi, Xujie Xiao, Xu Li, Jingkang Chen, Chengfei Zhu","doi":"10.1007/s13391-023-00478-5","DOIUrl":null,"url":null,"abstract":"<div><p>The hydrated iron fluoride (Fe<sub>3</sub>F<sub>8</sub>·2H<sub>2</sub>O) with mixed valence cations is successfully synthesized through a rapid electrolytic synthesis route for the first time using low-concentration HF solution as fluorine source and cheap carbon steel as iron source. By controlling the value of current density, submicron structured hydrated iron fluoride with different grain sizes is obtained. The thermal behavior of Fe<sub>3</sub>F<sub>8</sub>·2H<sub>2</sub>O under air atmosphere is studied. The product cooling to room temperature after heat treatment is FeF<sub>2.2</sub>(OH)<sub>0.8</sub>·0.33H<sub>2</sub>O, which is determined by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Fourier transform infrared spectrometer (FT-IR), and thermogravimetry/differential scanning calorimetry (TG/DSC). The evaluation of the electrochemical performance of FeF<sub>2.2</sub>(OH)<sub>0.8</sub>·0.33H<sub>2</sub>O as a cathode for lithium batteries shows that it has an initial discharge capacity as high as 580 mAh g<sup>−1</sup> in a wide voltage range of 1.0–4.5 V at a current density of 20 mA g<sup>−1</sup>, but the cycle performance is not very satisfactory, only 170 mAh g<sup>−1</sup> after 50 cycles.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"306 - 316"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13391-023-00478-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Synthesis by Electrolysis of Iron-Based Fluoride as Cathode Materials for Lithium Ion Batteries\",\"authors\":\"Zengzeng Zheng, Jin Shi, Xujie Xiao, Xu Li, Jingkang Chen, Chengfei Zhu\",\"doi\":\"10.1007/s13391-023-00478-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The hydrated iron fluoride (Fe<sub>3</sub>F<sub>8</sub>·2H<sub>2</sub>O) with mixed valence cations is successfully synthesized through a rapid electrolytic synthesis route for the first time using low-concentration HF solution as fluorine source and cheap carbon steel as iron source. By controlling the value of current density, submicron structured hydrated iron fluoride with different grain sizes is obtained. The thermal behavior of Fe<sub>3</sub>F<sub>8</sub>·2H<sub>2</sub>O under air atmosphere is studied. The product cooling to room temperature after heat treatment is FeF<sub>2.2</sub>(OH)<sub>0.8</sub>·0.33H<sub>2</sub>O, which is determined by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Fourier transform infrared spectrometer (FT-IR), and thermogravimetry/differential scanning calorimetry (TG/DSC). The evaluation of the electrochemical performance of FeF<sub>2.2</sub>(OH)<sub>0.8</sub>·0.33H<sub>2</sub>O as a cathode for lithium batteries shows that it has an initial discharge capacity as high as 580 mAh g<sup>−1</sup> in a wide voltage range of 1.0–4.5 V at a current density of 20 mA g<sup>−1</sup>, but the cycle performance is not very satisfactory, only 170 mAh g<sup>−1</sup> after 50 cycles.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":536,\"journal\":{\"name\":\"Electronic Materials Letters\",\"volume\":\"20 3\",\"pages\":\"306 - 316\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13391-023-00478-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13391-023-00478-5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-023-00478-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
以低浓度 HF 溶液为氟源,廉价碳钢为铁源,通过快速电解合成路线首次成功合成了具有混合价阳离子的水合氟化铁(Fe3F8-2H2O)。通过控制电流密度值,获得了不同晶粒尺寸的亚微米结构水合氟化铁。研究了 Fe3F8-2H2O 在空气环境下的热行为。通过 X 射线衍射 (XRD)、X 射线光电子能谱 (XPS)、傅立叶变换红外光谱仪 (FT-IR) 和热重/差示扫描量热仪 (TG/DSC) 测定了热处理后冷却至室温的产物 FeF2.2(OH)0.8-0.33H2O。对 FeF2.2(OH)0.8-0.33H2O作为锂电池正极的电化学性能评估表明,在 20 mA g-1 的电流密度下,它在 1.0-4.5 V 的宽电压范围内的初始放电容量高达 580 mAh g-1,但循环性能并不十分理想,循环 50 次后仅为 170 mAh g-1。
Synthesis by Electrolysis of Iron-Based Fluoride as Cathode Materials for Lithium Ion Batteries
The hydrated iron fluoride (Fe3F8·2H2O) with mixed valence cations is successfully synthesized through a rapid electrolytic synthesis route for the first time using low-concentration HF solution as fluorine source and cheap carbon steel as iron source. By controlling the value of current density, submicron structured hydrated iron fluoride with different grain sizes is obtained. The thermal behavior of Fe3F8·2H2O under air atmosphere is studied. The product cooling to room temperature after heat treatment is FeF2.2(OH)0.8·0.33H2O, which is determined by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Fourier transform infrared spectrometer (FT-IR), and thermogravimetry/differential scanning calorimetry (TG/DSC). The evaluation of the electrochemical performance of FeF2.2(OH)0.8·0.33H2O as a cathode for lithium batteries shows that it has an initial discharge capacity as high as 580 mAh g−1 in a wide voltage range of 1.0–4.5 V at a current density of 20 mA g−1, but the cycle performance is not very satisfactory, only 170 mAh g−1 after 50 cycles.
期刊介绍:
Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.