{"title":"Nrat:利用固有标签噪声进行对抗训练","authors":"","doi":"10.1007/s10994-023-06437-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Adversarial training (AT) has been widely recognized as the most effective defense approach against adversarial attacks on deep neural networks and it is formulated as a min-max optimization. Most AT algorithms are geared towards research-oriented datasets such as MNIST, CIFAR10, etc., where the labels are generally correct. However, noisy labels, e.g., mislabelling, are inevitable in real-world datasets. In this paper, we investigate AT with inherent label noise, where the training dataset itself contains mislabeled samples. We first empirically show that the performance of AT typically degrades as the label noise rate increases. Then, we propose a <em>Noisy-Robust Adversarial Training</em> (NRAT) algorithm, which leverages the recent advancements in learning with noisy labels to enhance the performance of AT in the presence of label noise. For experimental comparison, we consider two essential metrics in AT: (i) trade-off between natural and robust accuracy; (ii) robust overfitting. Our experiments show that NRAT’s performance is on par with, or better than, the state-of-the-art AT methods on both evaluation metrics. Our code is publicly available at: https://github.com/TrustAI/NRAT.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"101 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nrat: towards adversarial training with inherent label noise\",\"authors\":\"\",\"doi\":\"10.1007/s10994-023-06437-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Adversarial training (AT) has been widely recognized as the most effective defense approach against adversarial attacks on deep neural networks and it is formulated as a min-max optimization. Most AT algorithms are geared towards research-oriented datasets such as MNIST, CIFAR10, etc., where the labels are generally correct. However, noisy labels, e.g., mislabelling, are inevitable in real-world datasets. In this paper, we investigate AT with inherent label noise, where the training dataset itself contains mislabeled samples. We first empirically show that the performance of AT typically degrades as the label noise rate increases. Then, we propose a <em>Noisy-Robust Adversarial Training</em> (NRAT) algorithm, which leverages the recent advancements in learning with noisy labels to enhance the performance of AT in the presence of label noise. For experimental comparison, we consider two essential metrics in AT: (i) trade-off between natural and robust accuracy; (ii) robust overfitting. Our experiments show that NRAT’s performance is on par with, or better than, the state-of-the-art AT methods on both evaluation metrics. Our code is publicly available at: https://github.com/TrustAI/NRAT.</p>\",\"PeriodicalId\":49900,\"journal\":{\"name\":\"Machine Learning\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10994-023-06437-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-023-06437-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Nrat: towards adversarial training with inherent label noise
Abstract
Adversarial training (AT) has been widely recognized as the most effective defense approach against adversarial attacks on deep neural networks and it is formulated as a min-max optimization. Most AT algorithms are geared towards research-oriented datasets such as MNIST, CIFAR10, etc., where the labels are generally correct. However, noisy labels, e.g., mislabelling, are inevitable in real-world datasets. In this paper, we investigate AT with inherent label noise, where the training dataset itself contains mislabeled samples. We first empirically show that the performance of AT typically degrades as the label noise rate increases. Then, we propose a Noisy-Robust Adversarial Training (NRAT) algorithm, which leverages the recent advancements in learning with noisy labels to enhance the performance of AT in the presence of label noise. For experimental comparison, we consider two essential metrics in AT: (i) trade-off between natural and robust accuracy; (ii) robust overfitting. Our experiments show that NRAT’s performance is on par with, or better than, the state-of-the-art AT methods on both evaluation metrics. Our code is publicly available at: https://github.com/TrustAI/NRAT.
期刊介绍:
Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.