{"title":"自信的计算社会科学","authors":"Carolina E. S. Mattsson","doi":"10.1140/epjds/s13688-023-00435-0","DOIUrl":null,"url":null,"abstract":"<p>There is an ongoing shift in computational social science towards validating our methodologies and improving the reliability of our findings. This is tremendously exciting in that we are moving beyond exploration, towards a fuller integration with theory in social science. We stand poised to advance also new, better theory. But, as we look towards this future we must also work to update our conventions around training, hiring, and funding to suit our maturing field.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"7 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational social science with confidence\",\"authors\":\"Carolina E. S. Mattsson\",\"doi\":\"10.1140/epjds/s13688-023-00435-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There is an ongoing shift in computational social science towards validating our methodologies and improving the reliability of our findings. This is tremendously exciting in that we are moving beyond exploration, towards a fuller integration with theory in social science. We stand poised to advance also new, better theory. But, as we look towards this future we must also work to update our conventions around training, hiring, and funding to suit our maturing field.</p>\",\"PeriodicalId\":11887,\"journal\":{\"name\":\"EPJ Data Science\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Data Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1140/epjds/s13688-023-00435-0\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Data Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1140/epjds/s13688-023-00435-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
There is an ongoing shift in computational social science towards validating our methodologies and improving the reliability of our findings. This is tremendously exciting in that we are moving beyond exploration, towards a fuller integration with theory in social science. We stand poised to advance also new, better theory. But, as we look towards this future we must also work to update our conventions around training, hiring, and funding to suit our maturing field.
期刊介绍:
EPJ Data Science covers a broad range of research areas and applications and particularly encourages contributions from techno-socio-economic systems, where it comprises those research lines that now regard the digital “tracks” of human beings as first-order objects for scientific investigation. Topics include, but are not limited to, human behavior, social interaction (including animal societies), economic and financial systems, management and business networks, socio-technical infrastructure, health and environmental systems, the science of science, as well as general risk and crisis scenario forecasting up to and including policy advice.