与同质高阶椭圆算子和球准巴纳赫函数空间相关的哈代空间的最大函数和里兹变换特性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xiaosheng Lin, Dachun Yang, Sibei Yang, Wen Yuan
{"title":"与同质高阶椭圆算子和球准巴纳赫函数空间相关的哈代空间的最大函数和里兹变换特性","authors":"Xiaosheng Lin, Dachun Yang, Sibei Yang, Wen Yuan","doi":"10.1007/s00365-023-09676-8","DOIUrl":null,"url":null,"abstract":"<p>Let <i>L</i> be a homogeneous divergence form higher order elliptic operator with complex bounded measurable coefficients on <span>\\({\\mathbb {R}}^n\\)</span> and <i>X</i> a ball quasi-Banach function space on <span>\\({\\mathbb {R}}^n\\)</span> satisfying some mild assumptions. Denote by <span>\\(H_{X,\\, L}({\\mathbb {R}}^n)\\)</span> the Hardy space, associated with both <i>L</i> and <i>X</i>, which is defined via the Lusin area function related to the semigroup generated by <i>L</i>. In this article, the authors establish both the maximal function and the Riesz transform characterizations of <span>\\(H_{X,\\, L}({\\mathbb {R}}^n)\\)</span>. The results obtained in this article have a wide range of generality and can be applied to the weighted Hardy space, the variable Hardy space, the mixed-norm Hardy space, the Orlicz–Hardy space, the Orlicz-slice Hardy space, and the Morrey–Hardy space, associated with <i>L</i>. In particular, even when <i>L</i> is a second order divergence form elliptic operator, both the maximal function and the Riesz transform characterizations of the mixed-norm Hardy space, the Orlicz-slice Hardy space, and the Morrey–Hardy space, associated with <i>L</i>, obtained in this article, are completely new.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal Function and Riesz Transform Characterizations of Hardy Spaces Associated with Homogeneous Higher Order Elliptic Operators and Ball Quasi-Banach Function Spaces\",\"authors\":\"Xiaosheng Lin, Dachun Yang, Sibei Yang, Wen Yuan\",\"doi\":\"10.1007/s00365-023-09676-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>L</i> be a homogeneous divergence form higher order elliptic operator with complex bounded measurable coefficients on <span>\\\\({\\\\mathbb {R}}^n\\\\)</span> and <i>X</i> a ball quasi-Banach function space on <span>\\\\({\\\\mathbb {R}}^n\\\\)</span> satisfying some mild assumptions. Denote by <span>\\\\(H_{X,\\\\, L}({\\\\mathbb {R}}^n)\\\\)</span> the Hardy space, associated with both <i>L</i> and <i>X</i>, which is defined via the Lusin area function related to the semigroup generated by <i>L</i>. In this article, the authors establish both the maximal function and the Riesz transform characterizations of <span>\\\\(H_{X,\\\\, L}({\\\\mathbb {R}}^n)\\\\)</span>. The results obtained in this article have a wide range of generality and can be applied to the weighted Hardy space, the variable Hardy space, the mixed-norm Hardy space, the Orlicz–Hardy space, the Orlicz-slice Hardy space, and the Morrey–Hardy space, associated with <i>L</i>. In particular, even when <i>L</i> is a second order divergence form elliptic operator, both the maximal function and the Riesz transform characterizations of the mixed-norm Hardy space, the Orlicz-slice Hardy space, and the Morrey–Hardy space, associated with <i>L</i>, obtained in this article, are completely new.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00365-023-09676-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00365-023-09676-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

让 L 是一个在 \({\mathbb {R}}^n\) 上具有复杂有界可测系数的同质发散形式高阶椭圆算子,X 是一个在 \({\mathbb {R}}^n\) 上满足一些温和假设的球准巴纳赫函数空间。用 \(H_{X,\, L}({\mathbb {R}}^n)\ 表示与 L 和 X 相关的哈代空间,它是通过与 L 产生的半群相关的卢辛面积函数定义的。在本文中,作者建立了 \(H_{X,\, L}({\mathbb {R}}^n)\ 的最大函数和里兹变换特征。)本文得到的结果具有广泛的通用性,可以应用于与 L 相关联的加权哈代空间、可变哈代空间、混合规范哈代空间、奥利奇-哈代空间、奥利奇-切片哈代空间和莫雷-哈代空间。特别是,即使当 L 是二阶发散形式的椭圆算子时,本文得到的与 L 相关的混合规范哈代空间、奥利奇-切片哈代空间和莫雷-哈代空间的最大函数和里兹变换特征都是全新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal Function and Riesz Transform Characterizations of Hardy Spaces Associated with Homogeneous Higher Order Elliptic Operators and Ball Quasi-Banach Function Spaces

Let L be a homogeneous divergence form higher order elliptic operator with complex bounded measurable coefficients on \({\mathbb {R}}^n\) and X a ball quasi-Banach function space on \({\mathbb {R}}^n\) satisfying some mild assumptions. Denote by \(H_{X,\, L}({\mathbb {R}}^n)\) the Hardy space, associated with both L and X, which is defined via the Lusin area function related to the semigroup generated by L. In this article, the authors establish both the maximal function and the Riesz transform characterizations of \(H_{X,\, L}({\mathbb {R}}^n)\). The results obtained in this article have a wide range of generality and can be applied to the weighted Hardy space, the variable Hardy space, the mixed-norm Hardy space, the Orlicz–Hardy space, the Orlicz-slice Hardy space, and the Morrey–Hardy space, associated with L. In particular, even when L is a second order divergence form elliptic operator, both the maximal function and the Riesz transform characterizations of the mixed-norm Hardy space, the Orlicz-slice Hardy space, and the Morrey–Hardy space, associated with L, obtained in this article, are completely new.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信