Bingjie Sun , Cheng Huang , Chenyu Yang , Da Ke , Ye Liu , Qi Lu , Xiufan Liu , Xuyang Xiong , Yuanzhen Chen , Qingqing Jiang , Juncheng Hu , Tengfei Zhou
{"title":"用于高效光催化的 MoS2/Pd 键合富含缺陷的 BiOCl 表面的原子间电荷和能量转移路径","authors":"Bingjie Sun , Cheng Huang , Chenyu Yang , Da Ke , Ye Liu , Qi Lu , Xiufan Liu , Xuyang Xiong , Yuanzhen Chen , Qingqing Jiang , Juncheng Hu , Tengfei Zhou","doi":"10.1016/j.apcatb.2024.123720","DOIUrl":null,"url":null,"abstract":"<div><p>Construction of heterogeneous transmission interfaces that spatially separate Coulomb-bound electron-hole pairs in semiconductors allows exceptional control over optoelectronic properties, thereby enhancing the efficiency of solar energy conversion. In this study, we propose an effective photocatalyst for full water splitting named MS/BOC-x/Pd, comprising atomic layer of MoS<sub>2</sub><span> bonded to defect-rich BiOCl, and a non-plasmonic Pd oxidation co-catalyst is exclusively assembled on the sides to form a strong electronic coupling and maximize the trapping of holes. The presence of the Mo-S-Bi motif promotes rapid charge migration, resulting in impressive rates of H</span><sub>2</sub> and O<sub>2</sub> formation (165 and 9.17 μmol g<sup>−1</sup> h<sup>−1</sup>, respectively), without the requirement of sacrificial agents or sensitizers. Through experimental and theoretical investigations, we discovered that the occupation of sulfur atoms in oxygen vacancies extends the overlap of surface charges, thereby facilitating the separation of inner/interfacial electron-hole pairs. The Mo-S-Bi bond provides directional guidance for charge transfer to the surface redox sites. These findings provide valuable insights for the future design of highly efficient photocatalysts for solar energy conversions.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"345 ","pages":"Article 123720"},"PeriodicalIF":20.2000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic interfacial charge and energy transfer paths at MoS2/Pd bonded defect-rich BiOCl interfaces for efficient photocatalysis\",\"authors\":\"Bingjie Sun , Cheng Huang , Chenyu Yang , Da Ke , Ye Liu , Qi Lu , Xiufan Liu , Xuyang Xiong , Yuanzhen Chen , Qingqing Jiang , Juncheng Hu , Tengfei Zhou\",\"doi\":\"10.1016/j.apcatb.2024.123720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Construction of heterogeneous transmission interfaces that spatially separate Coulomb-bound electron-hole pairs in semiconductors allows exceptional control over optoelectronic properties, thereby enhancing the efficiency of solar energy conversion. In this study, we propose an effective photocatalyst for full water splitting named MS/BOC-x/Pd, comprising atomic layer of MoS<sub>2</sub><span> bonded to defect-rich BiOCl, and a non-plasmonic Pd oxidation co-catalyst is exclusively assembled on the sides to form a strong electronic coupling and maximize the trapping of holes. The presence of the Mo-S-Bi motif promotes rapid charge migration, resulting in impressive rates of H</span><sub>2</sub> and O<sub>2</sub> formation (165 and 9.17 μmol g<sup>−1</sup> h<sup>−1</sup>, respectively), without the requirement of sacrificial agents or sensitizers. Through experimental and theoretical investigations, we discovered that the occupation of sulfur atoms in oxygen vacancies extends the overlap of surface charges, thereby facilitating the separation of inner/interfacial electron-hole pairs. The Mo-S-Bi bond provides directional guidance for charge transfer to the surface redox sites. These findings provide valuable insights for the future design of highly efficient photocatalysts for solar energy conversions.</p></div>\",\"PeriodicalId\":244,\"journal\":{\"name\":\"Applied Catalysis B: Environmental\",\"volume\":\"345 \",\"pages\":\"Article 123720\"},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environmental\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926337324000316\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337324000316","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Atomic interfacial charge and energy transfer paths at MoS2/Pd bonded defect-rich BiOCl interfaces for efficient photocatalysis
Construction of heterogeneous transmission interfaces that spatially separate Coulomb-bound electron-hole pairs in semiconductors allows exceptional control over optoelectronic properties, thereby enhancing the efficiency of solar energy conversion. In this study, we propose an effective photocatalyst for full water splitting named MS/BOC-x/Pd, comprising atomic layer of MoS2 bonded to defect-rich BiOCl, and a non-plasmonic Pd oxidation co-catalyst is exclusively assembled on the sides to form a strong electronic coupling and maximize the trapping of holes. The presence of the Mo-S-Bi motif promotes rapid charge migration, resulting in impressive rates of H2 and O2 formation (165 and 9.17 μmol g−1 h−1, respectively), without the requirement of sacrificial agents or sensitizers. Through experimental and theoretical investigations, we discovered that the occupation of sulfur atoms in oxygen vacancies extends the overlap of surface charges, thereby facilitating the separation of inner/interfacial electron-hole pairs. The Mo-S-Bi bond provides directional guidance for charge transfer to the surface redox sites. These findings provide valuable insights for the future design of highly efficient photocatalysts for solar energy conversions.
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.