{"title":"印度北部寒潮的综合动态:独特寒潮条件的基本机制","authors":"K.S. Athira , Raju Attada , V. Brahmananda Rao","doi":"10.1016/j.wace.2024.100641","DOIUrl":null,"url":null,"abstract":"<div><p>The cold air outbreaks in the northern parts of India exert significant impacts on human health, energy, agriculture and transportation. In this study, we investigate the synoptic dynamics of cold waves and their linkages to large scale circulations for the winter period from 1982 to2020. Cold waves are classified into normal and intense (NCWs and ICWs) based on intensity and we examine the underlying mechanisms of formation and their atmospheric drivers. Notably, the spatial extent of the ICWs is almost double than that of normal ones thereby having the potential to affect a wider population. The NCWs are often influenced by western disturbances, leading to the inflow of cold air from Siberia (a region of shallow high). In contrast, ICWs are mostly linked to the presence of an omega block over the Ural-Siberian region. The downstream portion of the Ural block favours the inflow of cold northerlies into north India, leading to cold air advection and extreme cold wave conditions. The influence of Arctic warming for ICWs is further confirmed through a prominent Quasi-Resonant Amplification (QRA) fingerprint. Furthermore, La Niña condition seems to play a crucial role in triggering ICWs over north India. During La Niña, the prominent low level cyclonic anomaly helps in advecting the cold air from the higher latitudes into the country. The frequency as well as the duration of cold wave events are also found to be higher in La Niña years compared to El Niño and neutral years. The trend analysis of cold wave events over north India reveals a significant decrease in the frequency, duration and intensity during the analysis period due to a combination of various factors such as rising winter minimum temperatures (due to global warming), decreasing number of synoptic winter weather systems and Arctic amplification.</p></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"43 ","pages":"Article 100641"},"PeriodicalIF":6.1000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000021/pdfft?md5=b7f8fbe8769242111db45a009eac23df&pid=1-s2.0-S2212094724000021-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Synoptic dynamics of cold waves over north India: Underlying mechanisms of distinct cold wave conditions\",\"authors\":\"K.S. Athira , Raju Attada , V. Brahmananda Rao\",\"doi\":\"10.1016/j.wace.2024.100641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The cold air outbreaks in the northern parts of India exert significant impacts on human health, energy, agriculture and transportation. In this study, we investigate the synoptic dynamics of cold waves and their linkages to large scale circulations for the winter period from 1982 to2020. Cold waves are classified into normal and intense (NCWs and ICWs) based on intensity and we examine the underlying mechanisms of formation and their atmospheric drivers. Notably, the spatial extent of the ICWs is almost double than that of normal ones thereby having the potential to affect a wider population. The NCWs are often influenced by western disturbances, leading to the inflow of cold air from Siberia (a region of shallow high). In contrast, ICWs are mostly linked to the presence of an omega block over the Ural-Siberian region. The downstream portion of the Ural block favours the inflow of cold northerlies into north India, leading to cold air advection and extreme cold wave conditions. The influence of Arctic warming for ICWs is further confirmed through a prominent Quasi-Resonant Amplification (QRA) fingerprint. Furthermore, La Niña condition seems to play a crucial role in triggering ICWs over north India. During La Niña, the prominent low level cyclonic anomaly helps in advecting the cold air from the higher latitudes into the country. The frequency as well as the duration of cold wave events are also found to be higher in La Niña years compared to El Niño and neutral years. The trend analysis of cold wave events over north India reveals a significant decrease in the frequency, duration and intensity during the analysis period due to a combination of various factors such as rising winter minimum temperatures (due to global warming), decreasing number of synoptic winter weather systems and Arctic amplification.</p></div>\",\"PeriodicalId\":48630,\"journal\":{\"name\":\"Weather and Climate Extremes\",\"volume\":\"43 \",\"pages\":\"Article 100641\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212094724000021/pdfft?md5=b7f8fbe8769242111db45a009eac23df&pid=1-s2.0-S2212094724000021-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weather and Climate Extremes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212094724000021\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Climate Extremes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212094724000021","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Synoptic dynamics of cold waves over north India: Underlying mechanisms of distinct cold wave conditions
The cold air outbreaks in the northern parts of India exert significant impacts on human health, energy, agriculture and transportation. In this study, we investigate the synoptic dynamics of cold waves and their linkages to large scale circulations for the winter period from 1982 to2020. Cold waves are classified into normal and intense (NCWs and ICWs) based on intensity and we examine the underlying mechanisms of formation and their atmospheric drivers. Notably, the spatial extent of the ICWs is almost double than that of normal ones thereby having the potential to affect a wider population. The NCWs are often influenced by western disturbances, leading to the inflow of cold air from Siberia (a region of shallow high). In contrast, ICWs are mostly linked to the presence of an omega block over the Ural-Siberian region. The downstream portion of the Ural block favours the inflow of cold northerlies into north India, leading to cold air advection and extreme cold wave conditions. The influence of Arctic warming for ICWs is further confirmed through a prominent Quasi-Resonant Amplification (QRA) fingerprint. Furthermore, La Niña condition seems to play a crucial role in triggering ICWs over north India. During La Niña, the prominent low level cyclonic anomaly helps in advecting the cold air from the higher latitudes into the country. The frequency as well as the duration of cold wave events are also found to be higher in La Niña years compared to El Niño and neutral years. The trend analysis of cold wave events over north India reveals a significant decrease in the frequency, duration and intensity during the analysis period due to a combination of various factors such as rising winter minimum temperatures (due to global warming), decreasing number of synoptic winter weather systems and Arctic amplification.
期刊介绍:
Weather and Climate Extremes
Target Audience:
Academics
Decision makers
International development agencies
Non-governmental organizations (NGOs)
Civil society
Focus Areas:
Research in weather and climate extremes
Monitoring and early warning systems
Assessment of vulnerability and impacts
Developing and implementing intervention policies
Effective risk management and adaptation practices
Engagement of local communities in adopting coping strategies
Information and communication strategies tailored to local and regional needs and circumstances