{"title":"聚合范式下科学家的学科特点与合作行为:多层次网络视角","authors":"Jing Li, Qian Yu","doi":"10.1016/j.joi.2024.101491","DOIUrl":null,"url":null,"abstract":"<div><p>The convergence paradigm underlines the importance of integrating multiple disciplines through collaboration. However, the crucial question of how scientists' disciplinary characteristics influence scientific collaboration remains unresolved. Using an exponential random graph model for multilevel networks, this study provides insights into the impact of scientists' disciplinary characteristics on their collaborative behaviour based on data from the Materials Genome Initiative, a typical convergence field. These results show that: under the convergence paradigm, scientists with a greater number of affiliated disciplines or with greater disparities in knowledge systems among their affiliated disciplines are less active in collaboration, whereas scientists with more balanced competence across their affiliated disciplines are more active. Scientists are more likely to collaborate with people who have a similar ability to integrate multidisciplinary knowledge. Scientists with a focus on applied disciplines are more likely to collaborate than are those with a preference for basic disciplines. Scientists who focus more on peripheral and external disciplines are more active in collaboration than scientists who focus on core and internal disciplines. Scientists collaborate based on shared disciplines and utilise the unique disciplines of their collaborators to advance knowledge and thus expand their own research space. This study provides evidence for the selection of partners based on scientists' disciplinary characteristics and highlights its importance for interdisciplinary teams and project management.</p></div>","PeriodicalId":48662,"journal":{"name":"Journal of Informetrics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S175115772400004X/pdfft?md5=53331da9623a63a2cddabdc786bd973f&pid=1-s2.0-S175115772400004X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Scientists’ disciplinary characteristics and collaboration behaviour under the convergence paradigm: A multilevel network perspective\",\"authors\":\"Jing Li, Qian Yu\",\"doi\":\"10.1016/j.joi.2024.101491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The convergence paradigm underlines the importance of integrating multiple disciplines through collaboration. However, the crucial question of how scientists' disciplinary characteristics influence scientific collaboration remains unresolved. Using an exponential random graph model for multilevel networks, this study provides insights into the impact of scientists' disciplinary characteristics on their collaborative behaviour based on data from the Materials Genome Initiative, a typical convergence field. These results show that: under the convergence paradigm, scientists with a greater number of affiliated disciplines or with greater disparities in knowledge systems among their affiliated disciplines are less active in collaboration, whereas scientists with more balanced competence across their affiliated disciplines are more active. Scientists are more likely to collaborate with people who have a similar ability to integrate multidisciplinary knowledge. Scientists with a focus on applied disciplines are more likely to collaborate than are those with a preference for basic disciplines. Scientists who focus more on peripheral and external disciplines are more active in collaboration than scientists who focus on core and internal disciplines. Scientists collaborate based on shared disciplines and utilise the unique disciplines of their collaborators to advance knowledge and thus expand their own research space. This study provides evidence for the selection of partners based on scientists' disciplinary characteristics and highlights its importance for interdisciplinary teams and project management.</p></div>\",\"PeriodicalId\":48662,\"journal\":{\"name\":\"Journal of Informetrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S175115772400004X/pdfft?md5=53331da9623a63a2cddabdc786bd973f&pid=1-s2.0-S175115772400004X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Informetrics\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S175115772400004X\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Informetrics","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S175115772400004X","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Scientists’ disciplinary characteristics and collaboration behaviour under the convergence paradigm: A multilevel network perspective
The convergence paradigm underlines the importance of integrating multiple disciplines through collaboration. However, the crucial question of how scientists' disciplinary characteristics influence scientific collaboration remains unresolved. Using an exponential random graph model for multilevel networks, this study provides insights into the impact of scientists' disciplinary characteristics on their collaborative behaviour based on data from the Materials Genome Initiative, a typical convergence field. These results show that: under the convergence paradigm, scientists with a greater number of affiliated disciplines or with greater disparities in knowledge systems among their affiliated disciplines are less active in collaboration, whereas scientists with more balanced competence across their affiliated disciplines are more active. Scientists are more likely to collaborate with people who have a similar ability to integrate multidisciplinary knowledge. Scientists with a focus on applied disciplines are more likely to collaborate than are those with a preference for basic disciplines. Scientists who focus more on peripheral and external disciplines are more active in collaboration than scientists who focus on core and internal disciplines. Scientists collaborate based on shared disciplines and utilise the unique disciplines of their collaborators to advance knowledge and thus expand their own research space. This study provides evidence for the selection of partners based on scientists' disciplinary characteristics and highlights its importance for interdisciplinary teams and project management.
期刊介绍:
Journal of Informetrics (JOI) publishes rigorous high-quality research on quantitative aspects of information science. The main focus of the journal is on topics in bibliometrics, scientometrics, webometrics, patentometrics, altmetrics and research evaluation. Contributions studying informetric problems using methods from other quantitative fields, such as mathematics, statistics, computer science, economics and econometrics, and network science, are especially encouraged. JOI publishes both theoretical and empirical work. In general, case studies, for instance a bibliometric analysis focusing on a specific research field or a specific country, are not considered suitable for publication in JOI, unless they contain innovative methodological elements.