{"title":"TPGS 介导的转吸附体通过对变形性和稳定性的影响增强姜黄素的透皮给药。","authors":"Teng Guo, Chenming Zhang, Yuling Chen, Yihan Wu, Zhenda Liu, Yongtai Zhang, Nianping Feng","doi":"10.2174/0115672018279577231208055415","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Adding a suitable surfactant can enhance the transdermal permeability of transethosomes while also leveraging its functionality as a functional material. In this study, transethosomes were prepared using D-α-tocopherol acid polyethylene glycol succinate (TPGS) as edge activators for transdermal delivery of curcumin (Cur).</p><p><strong>Methods: </strong>The TPGS-mediated curcumin-loaded transethosomes (Cur@TES) were prepared and formulated optimally, and the optimized formulations were characterized for their morphology, particle size, entrapment efficiency (EE) and drug loading (DL). The stability and deformability of Cur@TES were investigated, while the transdermal delivery of Cur@TES was investigated through in vitro transdermal assays and fluorescence imaging. A mouse ear swelling model was performed to determine the anti-inflammatory effect of Cur@TES.</p><p><strong>Results: </strong>Cur@TES appeared round or elliptical in shape. The particle size, EE and DL for the optimized formulation were observed as 131.2 ± 7.2 nm, 97.68 ± 2.26%, and 6.58 ± 0.62%, respectively. X-ray diffraction analysis confirmed the formation of disordered structures in the inner core of the vesicles. Moreover, Cur@TES system demonstrated better stability and deformability compared to the curcumin-loaded ethosomes (Cur@ES). In-vitro transdermal experiments demonstrated that Cur@TES significantly increased the amount of drug retained in the skin (P<0.05). Fluorescence imaging confirmed that the skin distribution were distinctly enhanced with the delivery by TPGS mediated transethosomes. In addition, Cur@TES showed a significant inhibitory effect on Inflammatory swelling in the mouse ear-swelling model.</p><p><strong>Conclusion: </strong>TPGS-mediated transethosomes exhibit significant transdermal advantages and enhanced anti-inflammatory effects, providing a new perspective for the transdermal delivery of curcumin.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TPGS-mediated Transethosomes Enhance Transdermal Administration of Curcumin via Effects on Deformability and Stability.\",\"authors\":\"Teng Guo, Chenming Zhang, Yuling Chen, Yihan Wu, Zhenda Liu, Yongtai Zhang, Nianping Feng\",\"doi\":\"10.2174/0115672018279577231208055415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Adding a suitable surfactant can enhance the transdermal permeability of transethosomes while also leveraging its functionality as a functional material. In this study, transethosomes were prepared using D-α-tocopherol acid polyethylene glycol succinate (TPGS) as edge activators for transdermal delivery of curcumin (Cur).</p><p><strong>Methods: </strong>The TPGS-mediated curcumin-loaded transethosomes (Cur@TES) were prepared and formulated optimally, and the optimized formulations were characterized for their morphology, particle size, entrapment efficiency (EE) and drug loading (DL). The stability and deformability of Cur@TES were investigated, while the transdermal delivery of Cur@TES was investigated through in vitro transdermal assays and fluorescence imaging. A mouse ear swelling model was performed to determine the anti-inflammatory effect of Cur@TES.</p><p><strong>Results: </strong>Cur@TES appeared round or elliptical in shape. The particle size, EE and DL for the optimized formulation were observed as 131.2 ± 7.2 nm, 97.68 ± 2.26%, and 6.58 ± 0.62%, respectively. X-ray diffraction analysis confirmed the formation of disordered structures in the inner core of the vesicles. Moreover, Cur@TES system demonstrated better stability and deformability compared to the curcumin-loaded ethosomes (Cur@ES). In-vitro transdermal experiments demonstrated that Cur@TES significantly increased the amount of drug retained in the skin (P<0.05). Fluorescence imaging confirmed that the skin distribution were distinctly enhanced with the delivery by TPGS mediated transethosomes. In addition, Cur@TES showed a significant inhibitory effect on Inflammatory swelling in the mouse ear-swelling model.</p><p><strong>Conclusion: </strong>TPGS-mediated transethosomes exhibit significant transdermal advantages and enhanced anti-inflammatory effects, providing a new perspective for the transdermal delivery of curcumin.</p>\",\"PeriodicalId\":94287,\"journal\":{\"name\":\"Current drug delivery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115672018279577231208055415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672018279577231208055415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TPGS-mediated Transethosomes Enhance Transdermal Administration of Curcumin via Effects on Deformability and Stability.
Background: Adding a suitable surfactant can enhance the transdermal permeability of transethosomes while also leveraging its functionality as a functional material. In this study, transethosomes were prepared using D-α-tocopherol acid polyethylene glycol succinate (TPGS) as edge activators for transdermal delivery of curcumin (Cur).
Methods: The TPGS-mediated curcumin-loaded transethosomes (Cur@TES) were prepared and formulated optimally, and the optimized formulations were characterized for their morphology, particle size, entrapment efficiency (EE) and drug loading (DL). The stability and deformability of Cur@TES were investigated, while the transdermal delivery of Cur@TES was investigated through in vitro transdermal assays and fluorescence imaging. A mouse ear swelling model was performed to determine the anti-inflammatory effect of Cur@TES.
Results: Cur@TES appeared round or elliptical in shape. The particle size, EE and DL for the optimized formulation were observed as 131.2 ± 7.2 nm, 97.68 ± 2.26%, and 6.58 ± 0.62%, respectively. X-ray diffraction analysis confirmed the formation of disordered structures in the inner core of the vesicles. Moreover, Cur@TES system demonstrated better stability and deformability compared to the curcumin-loaded ethosomes (Cur@ES). In-vitro transdermal experiments demonstrated that Cur@TES significantly increased the amount of drug retained in the skin (P<0.05). Fluorescence imaging confirmed that the skin distribution were distinctly enhanced with the delivery by TPGS mediated transethosomes. In addition, Cur@TES showed a significant inhibitory effect on Inflammatory swelling in the mouse ear-swelling model.
Conclusion: TPGS-mediated transethosomes exhibit significant transdermal advantages and enhanced anti-inflammatory effects, providing a new perspective for the transdermal delivery of curcumin.