有机体三维生物打印:过去、现在和未来。

IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING
Tissue Engineering Part A Pub Date : 2024-06-01 Epub Date: 2024-02-02 DOI:10.1089/ten.TEA.2023.0209
Mariana Cabral, Ke Cheng, Donghui Zhu
{"title":"有机体三维生物打印:过去、现在和未来。","authors":"Mariana Cabral, Ke Cheng, Donghui Zhu","doi":"10.1089/ten.TEA.2023.0209","DOIUrl":null,"url":null,"abstract":"<p><p>Organoids are three-dimensional (3D) <i>in vitro</i> tissue models that are derived from stem cells and can closely mimic the structure and function of human organs. The ability to create organoids that recapitulate the complex cellular architecture of organs has emerged as an innovative technique in biomedical research and drug development. However, traditional methods of organoid culture are time consuming and often yield low quantities of cells, which has led to the development of 3D bioprinting of organoids from bioinks containing suspended cells and desired scaffolds. A comparison across different organoid-building techniques, focusing on 3D bioprinting and its benefits, may be helpful and was yet to be distinguished. The goal of this review is to provide an overview of the current state of 3D bioprinting of organoids and its potential applications in tissue engineering, drug screening, and regenerative medicine.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-Dimensional Bioprinting of Organoids: Past, Present, and Prospective.\",\"authors\":\"Mariana Cabral, Ke Cheng, Donghui Zhu\",\"doi\":\"10.1089/ten.TEA.2023.0209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organoids are three-dimensional (3D) <i>in vitro</i> tissue models that are derived from stem cells and can closely mimic the structure and function of human organs. The ability to create organoids that recapitulate the complex cellular architecture of organs has emerged as an innovative technique in biomedical research and drug development. However, traditional methods of organoid culture are time consuming and often yield low quantities of cells, which has led to the development of 3D bioprinting of organoids from bioinks containing suspended cells and desired scaffolds. A comparison across different organoid-building techniques, focusing on 3D bioprinting and its benefits, may be helpful and was yet to be distinguished. The goal of this review is to provide an overview of the current state of 3D bioprinting of organoids and its potential applications in tissue engineering, drug screening, and regenerative medicine.</p>\",\"PeriodicalId\":56375,\"journal\":{\"name\":\"Tissue Engineering Part A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering Part A\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEA.2023.0209\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEA.2023.0209","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

器官组织是一种三维体外组织模型,源自干细胞,可以近似模拟人体器官的结构和功能。制造能再现器官复杂细胞结构的类器官的能力已成为生物医学研究和药物开发领域的一项创新技术。然而,传统的类器官培养方法耗时较长,而且细胞产量往往较低,因此,人们开发出了利用含有悬浮细胞和所需支架的生物墨水进行类器官三维生物打印的方法。对不同的类器官构建技术进行比较,重点关注三维生物打印技术及其益处,可能会有所帮助,但目前尚未对这些技术进行区分。本综述旨在概述器官组织三维生物打印的现状及其在组织工程、药物筛选和再生医学中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-Dimensional Bioprinting of Organoids: Past, Present, and Prospective.

Organoids are three-dimensional (3D) in vitro tissue models that are derived from stem cells and can closely mimic the structure and function of human organs. The ability to create organoids that recapitulate the complex cellular architecture of organs has emerged as an innovative technique in biomedical research and drug development. However, traditional methods of organoid culture are time consuming and often yield low quantities of cells, which has led to the development of 3D bioprinting of organoids from bioinks containing suspended cells and desired scaffolds. A comparison across different organoid-building techniques, focusing on 3D bioprinting and its benefits, may be helpful and was yet to be distinguished. The goal of this review is to provide an overview of the current state of 3D bioprinting of organoids and its potential applications in tissue engineering, drug screening, and regenerative medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Engineering Part A
Tissue Engineering Part A Chemical Engineering-Bioengineering
CiteScore
9.20
自引率
2.40%
发文量
163
审稿时长
3 months
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信